Generation and Analysis of
Content for Physics-Based Video
Games

Matthew Stephenson

A thesis submitted for the degree of
Doctor of Philosophy
The Australian National University

July 2019

(© Matthew Stephenson 2019

Except where otherwise indicated, this thesis is my own original work.

A large percentage of this thesis is made up of the following research papers:

Chapter 2}

M. Stephenson, J. Renz, Procedural Generation of Complex Stable Structures
for Angry Birds Levels, [EEE Computational Intelligence and Games Conference
2016 (IEEE-CIG’16), Santorini, Greece, September 2016, pp. 178-185.

Chapter 3}

M. Stephenson,]. Renz, Procedural Generation of Levels for Angry Birds
Style Physics Games, The Twelfth Annual AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment (AIIDE16), Burlingame, CA, October
2016, pp. 225-231.

Chapter [4;

M. Stephenson, J. Renz, Generating Varied, Stable and Solvable Levels for
Angry Birds Style Physics Games, IEEE Computational Intelligence and Games
Conference 2017 (IEEE-CIG17), New York, NY, August 2017, pp. 288-295.

Chapter [5;

M. Stephenson, J. Renz, X. Ge, L. Ferreira, J. Togelius, P. Zhang, The 2017
AIBIRDS Level Generation Competition, IEEE Transactions on Games (TOG),
2018, pp. 1-10.

Chapter |6}

M. Stephenson, J. Renz, X. Ge, P. Zhang, Generating Stable, Building Block
Structures from Sketches, Computer Games Workshop at IJCAI-ECAI'18, Stock-
holm, Sweden, July 2018, pp. 1-10. Revised version submitted to IEEE Transactions
on Games (TOG).

Chapter |7

M. Stephenson, J. Renz, Creating a Hyper-Agent for Solving Angry Birds Lev-
els, The Thirteenth Annual AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE’17), Snowbird, UT, October 2017, pp. 234-240.

Chapter [8;
M. Stephenson, J. Renz, Deceptive Angry Birds: Towards Smarter Game-

Playing Agents, The Twelfth International Conference on the Foundations of Dig-
ital Games (FDG'18), Malmo, Sweden, August 2018, pp. 13:1-13:10, (honourable
mention).

Chapter [9;

M. Stephenson, J. Renz, Agent-Based Adaptive Level Generation for Dynamic
Difficulty Adjustment in Angry Birds, Workshop on Games and Simulations for
Artificial Intelligence at AAAI'19, Honolulu, Hawaii, January 2019, pp. 1-8.

e Chapter[10}
M. Stephenson, J. Renz, X. Ge, The Computational Complexity of Angry Birds

and Similar Physics-Simulation Games, The Thirteenth Annual AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment (AIIDE’17), Snow-
bird, UT, October 2017, pp. 241-247.

e Chapter[11}
M. Stephenson, J. Renz, X. Ge, The Computational Complexity of Angry

Birds, Artificial Intelligence Journal (Al]), Under revision, 2018, pp. 1-50.

Matthew Stephenson
6 July 2019

We can only see a short distance ahead, but we can see plenty there that needs to be done.

Alan Turing

Acknowledgments

e I would first like to acknowledge and extend my deepest gratitude to my pri-
mary supervisor Jochen Renz, who has played an integral part in helping to
drive, motivate and develop my research skills further. Thank you for your
encouragement, dedication and patience over the last few years, for first intro-
ducing me to this field of research, and for all the assistance and expert advice
you have provided during my time with you. I would also like to thank to
my two associate supervisors and panel members Marcus Hutter and Patrik
Haslum, for their additional wisdom and suggestions during this period.

e My thanks to the Australian National University for providing me with a PhD
scholarship, which has allowed me to conduct my research without any finan-
cial burden, as well as to the ANU Research School of Computer Science and
the College of Engineering and Computer Science, for providing me with the
facilities and resources to carry out my work.

e During my time researching for this thesis I have had to opportunity to meet
and collaborate with many fantastic people. My thanks to all the other re-
searchers and institutions with whom I have conducted and published joint re-
search, Damien Anderson, Lucas Ferreira, Raluca Gaina, Ahmed Khalifa, Philip
Bontrager, Diego Perez-Liebana, Julian Togelius, Christoph Salge, Simon Lucas
and John Levine, as well as all the other conference attendants, students, lec-
turers or professors who have helped to inspire my love for this research field.

e My deepest thanks to my fellow research colleagues and friends, Xiaoyu (Gary)
Ge, Peng Zhang and Hua Hua, for their advice and companionship; to my
parents Vicky and Peter, my siblings Paul and Louise, and all my extended
family who have supported me; and to my close friends over the last few years
Kavi, Kevin, Sherwin and Helena for the fun and laughter they have provided.

e My final thanks to my partner Katrina, who has been an unlimited source of
love, support and homemade muffins during this undoubtably stressful but
simultaneously enjoyable period of my life.

vii

Abstract

The development of artificial intelligence (AI) techniques that can assist with the cre-
ation and analysis of digital content is a broad and challenging task for researchers.
This topic has been most prevalent in the field of game Al research, where games are
used as a testbed for solving more complex real-world problems. One of the major
issues with prior Al-assisted content creation methods for games has been a lack
of direct comparability to real-world environments, particularly those with realistic
physical properties to consider. Creating content for such environments typically re-
quires physics-based reasoning, which imposes many additional complications and
restrictions that must be considered. Addressing and developing methods that can
deal with these physical constraints, even if they are only within simulated game
environments, is an important and challenging task for Al techniques that intend to
be used in real-world situations.

The research presented in this thesis describes several approaches to creating and
analysing levels for the physics-based puzzle game Angry Birds, which features a
realistic 2D environment. This research was multidisciplinary in nature and covers
a wide variety of different Al fields, leading to this thesis being presented as a com-
pilation of published work. The central part of this thesis consists of procedurally
generating levels for physics-based games similar to those in Angry Birds. This pre-
dominantly involves creating and placing stable structures made up of many smaller
blocks, as well as other level elements. Multiple approaches are presented, includ-
ing both fully autonomous and human-AI collaborative methodologies. In addition,
several analyses of Angry Birds levels were carried out using current state-of-the-art
agents. A hyper-agent was developed that uses machine learning to estimate the
performance of each agent in a portfolio for an unknown level, allowing it to select
the one most likely to succeed. Agent performance on levels that contain deceptive
or creative properties was also investigated, allowing determination of the current
strengths and weaknesses of different Al techniques. The observed variability in
performance across levels for different Al techniques led to the development of an
adaptive level generation system, allowing for the dynamic creation of increasingly
challenging levels over time based on agent performance analysis. An additional
study also investigated the theoretical complexity of Angry Birds levels from a com-
putational perspective.

While this research is predominately applied to video games with physics-based
simulated environments, the challenges and problems solved by the proposed meth-
ods also have significant real-world potential and applications.

ix

Contents

[Acknowledgments| vii
[Abstract] ix
(I_Introduction| 1
(.1 Video Games|. 3
.................................. 4

112 Pr ral Content Generationl. 5

(I3 Competitions| 8

(1.2 Physics-Based Games|. L. 9
12.1 Relevan Real-World Problems|. 10

(122 AngryBirds| oo 12

(1.22.1 Agents|. o 15

1222 level Generationf. 17

(1.3 Thesis Outlinel 18
1.3.1 vationl. 18

(1.3.2° Summary| o 19

[1.3.3 Research Paper Contributions| 20

2 Procedural Generation of Complex Stable Structures for Angry Birds Levels| 25

2.1 Foreword|. 25
22 Paper] 25
[3 Procedural Generation of Levels for Angry Birds Style Physics Games| 35
3.1 Foreword|. 35
32 Paper] 35
4 Generating Varied, Stable and Solvable Levels for Angry Birds Style Physics |
[_Games 43
41 Foreword|. 43
4 DET| . . 43
[5 The 2017 AIBIRDS Level Generation Competition| 53
Bl Foreword|. e 53
5.2 Paper] 53

xi

xii Contents

|6 Generating Stable, Building Block Structures from Sketches| 65
6.1 Foreword 65
6.2 Paper| 65

[7 Creating a Hyper-Agent for Solving Angry Birds Levels| 77
71 Forewordl. e 77
....................................... 77

[8 Deceptive Angry Birds: Towards Smarter Game-Playing Agents| 85
8.1 Foreword 85
3 DeT| e e 85

[9 Agent-Based Adaptive Level Generation for Dynamic Difficulty Adjust- |

[mentin Angry Birds| 97
91 Forewordl. e 97
0.2 Paper| 97

(10 The Computational Complexity of Angry Birds and Similar Physics-Simulation|

[Games| 107
(10.1 Foreword| 107
10.2 Paper| 107

(11 The Computational Complexity of Angry Birds| 115
111 Forewordl. e 115
....................................... 115

12 Conclusion| 167
021 Future Workl 168

(12.1.1 Advanced Content Creationl. 168
(12.1.2 Improved Performance Analysis| 169

(12.1.3 Reinforcement Learning Agents| 169

Chapter 1

Introduction

Developing intelligent agents that can operate effectively within a physical environ-
ment has been a long-standing goal for the field of artificial intelligence (Al) research.
The creation of such an agent would have a huge impact on the regular lives of hu-
mans, greatly increasing the ability of robots to assist with simple everyday tasks.
Almost everything we do within the real world requires some form of physical rea-
soning and understanding on our part to accomplish. This includes actions as mun-
dane as picking up a book on our desk or walking down the street, to more complex
tasks such as driving a car. While performing some of these actions can seem al-
most trivial to us, they pose significant challenges to Al In many of these situations
we do not know the specific physical properties of the objects involved or how ex-
actly they will react when we perform an action, yet we can still perform said action
successfully each time. We often complete these physical reasoning tasks without
even thinking about them, but they are vital for any agent that intends to work and
operate alongside us.

As an example, imagine the task of pouring yourself a glass of water from a jug.
While this may not seem like a difficult action, it involves reasoning about several
different physical systems. You must first pick up the jug with your hand, bring it
above the glass, and then carefully tilt the jug so that water gently pours out. Pour
too lightly and the water will likely run down the outside of the jug, too heavily
and the water may miss the glass completely. You must also be aware of when the
water will likely fill the glass and when to stop pouring, which is typically before the
glass appears full. Each of these individual elements must be carefully considered
by an intelligent agent in order to perform the task successfully. What makes this
even more challenging is that we likely do not know the exact weight of the jug, the
viscosity of the water, or the size of the cup, yet we can still perform this task without
any significant conscious effort on our part. Humans naturally have an intuitive
understanding of the physical world, a feature that was likely crucial to our survival
as a species. Intelligent agents however, lack the thousands of years of evolution that
we possess, or the vital early years of childhood where our understanding of the
world around us is primarily formed [Baillargeon, 2007].

Allowing inexperienced agents with untested algorithms to perform on actual
real-world problems is neither practical nor cost efficient. Instead, such agents are
often first evaluated using a simulated environment, where new algorithms can be

1

2 Introduction

experimented with in relative safety. Learning from our failures is a critical aspect
of human cognition, and using simulated environments gives this same opportu-
nity to agents as well. While these simulated environments are less complex than
the real world, the necessary physical and spatial reasoning techniques that agents
within them must exhibit are very similar to those needed for real-world tasks. One
such medium that provides us with suitable pre-existing environments and tasks
for agents to complete, is that of video games. In order to play these video games,
agents must often exhibit sophisticated reasoning and understanding of their en-
vironment. The closer these game environments are to real life, the more directly
applicable our agents become to real-world situations. While most video games that
are currently used for research purposes are relatively simple (think basic Atari and
arcade-style games), we believe there is a wealth of research potential in physics-
based games. Designing agents to successfully play such games requires physical
and spatial reasoning abilities that are very similar to those needed for completing
many real-world tasks. However, the performance of modern agents developed for
such games have failed to equal that of most human players. Understanding why
current Al techniques struggle with these games, as well as developing new meth-
ods that can analyse or evaluate the performance of different agents in physics-based
environments, will likely help to improve these agents” abilities significantly in the
future.

Rather than focusing on the development of specific Al techniques for directly
improving agent performance, this thesis is centred around methods for creating re-
alistic and viable content for physics-based game environments, as well as analysing
how different agents perform on such content and environments. Not only do these
proposed techniques have many applications for improving the design and devel-
opment of physics-based video games, they can also be used to enhance the per-
formance of future agents. The motivations and applications of the presented work
will therefore be two-fold. The more obvious and immediate applications for each
method will be how it can be used to help improve the quality of physics-based
video games, with the intended goal of being played by humans. The second overar-
ching motivation will be about how these methods can be used, either individually
or combined together, to aid in the development of physical reasoning agents, both
for video games and also for the real world.

The majority of the research presented within this thesis is focussed on accom-
plishing one of three primary tasks. The first task is to develop methods for proce-
durally generating levels within our physics-based game’s environment, which not
only increases the amount of available content for players, but also allows us to effec-
tively create a large number of training and evaluation scenarios for our agents. The
second task is to analyse the current abilities of state-of-the-art agents, determine if
they can be combined to improve overall performance, and identify any weaknesses
or limitations in their differing Al techniques or strategies. The third and final task
is to combine the two previous tasks together, creating a level generator that can
detect a specific agent’s limitations and emphasise these within its generated levels.
This essentially allows for the possible creation of a cyclic learning system, where

§1.1 Video Games 3

reinforcement learning agents can get increasingly better by improving against the
generated levels, and the generator in turn creates increasingly challenging levels
based on the agent’s improved performance.

1.1 Video Games

The field of game Al research, or more specifically for this thesis the field of video
game Al research, can be defined simply as the study of any Al techniques that are
used by or applied to (video) games. This can either be to improve the games them-
selves or, as is more often the case in academia, because games can be beneficial
for developing new and innovative Al techniques. Video games provide researchers
with a wide range of complex problems that have not previously been investigated,
and allow us to evaluate our proposed methods in a safe and well-defined environ-
ment [Yannakakis and Togelius, 2018|]. The challenges associated with playing, creat-
ing or analysing content for these games often requires experimentation with many
different areas of Al, such as machine learning, planning, evolutionary algorithms,
tree search (especially Monte Carlo) [Browne et al., 2012], knowledge representation
and reasoning, general intelligence [Togelius and Yannakakis, [2016|], fuzzy logic, etc.
Games also provide a great testbed case for trying out newly developed algorithms
before being used in real-world situations. The problems associated with certain
video games are also often very similar to those of many real-world problems, even
if the domains may on first appearance seem unrelated [Togelius, 2015]. As an exam-
ple, deep reinforcement learning has proven to be very successful at playing a variety
of arcade and console games, at a performance level equal to that of a human player,
based solely on using the screen’s pixels as input [Mnih et al., 2015} 2013]]. This tech-
nique has since been applied to many other real-world applications and cutting-edge
technology, such as self-driving cars [Rao and Frtunikj, 2018} Xia et al., 2016].

From a computational complexity perspective, many games can often be proved
either NP-hard or PSPACE-complete, meaning that any algorithm designed for solv-
ing such a game could potentially take a very long time and/or require a very large
amount of memory [Aloupis et al., 2015; |[Demaine et al., 2018]. While the compu-
tational complexity of a game does not necessarily correlate to how well a heuristic
agent might perform on it, this nevertheless demonstrates that certain games are, at
least in theory, very difficult to solve.

While games can certainly be beneficial for evaluating Al techniques on complex
problems, Al can also be used to improve the games themselves. Al techniques have
been used to enhance mainstream video game design and development since the
early days of the industry [Rabin, |2002]. Examples include opponent tactics (Half-
Life (Valve, 1998)), machine learning and belief-desired-intention cognitive models
(Black and White (Lionhead Studios, 2001)), imitation learning (Forza Motorsport (Turn
10 Studios, 2005)), player experience modelling through use of an Al director (Left
4 Dead (Valve, 2008), Resistance 3 (Insomniac Games, 2011)), non-player character
(NPC) pathfinding and decision making (The Elder Scrolls V: Skyrim (Bethesda Game

4 Introduction

Studios, 2011)), neuroevolutionary platoon training (Supreme Commander 2 (Gas Pow-
ered Games, 2010)), as well as a large number of games using a wide variety of proce-
dural content generation techniques (Minecraft (Mojang, 2011), Borderlands (Gearbox
Software, 2009), Spore (Maxis, 2008) and No Man’s Sky (Hello Games, 2016) to name
just a few). While it still typically takes a while for newly developed game Al tech-
niques to transition from the academic research community to the mainstream video
game industry, they are often adopted and utilised much sooner within the inde-
pendent video game scene (indie games). The widespread popularity and critical
acclaim many of these games have received, suggests that integrating Al techniques
can have a substantial impact on the enjoyment and appeal of modern video games
when used effectively.

Further information on the history, motivations, benefits and applications of Al
research for video games can be found in the following books [Yannakakis and To-
gelius, 2018} Shaker et al., 2016b}; Togelius, 2018].

1.1.1 Agents

The most common and historical use of Al for games research, and likely the first
thing that comes to mind when thinking about it, is for developing intelligent agents
that can play games in a similar manner to humans. This initially began with agents
that were designed to play classic board games such as Chess (Deep Blue) [Camp-
bell et al., 2002; Newborn and Newborn, [1997], Checkers (Chinook) [Schaefter et al.,
1996; [Samuel, (1959] or Backgammon (TD-Gammon) [Tesauro, 1995], before making
the logical step into video game AI. While agents can be used for many different
purposes in video games, such as creating balanced opponent strategies or realistic
behaving NPCs, the majority of academic research into developing game agents has
primarily focussed on simply creating the best performing and most efficient agent
possible (i.e. the agent is simply trying to win the game).

Creating agents that can outperform humans at various different tasks has long
been a great achievement of Al research, and video games are no exception. Many
of us likely spent countless hours during our youth playing a wide variety of differ-
ent games, learning and mastering their rules and mechanics. It is often exciting to
see video games that we played growing up, or even still play now, being pushed
to their absolute limits by expert players or modern Al agents. This feeling has
certainly resonated with a large percentage of today’s population. For competitive
multi-player games, the e-sports scene has exploded in popularity over recent years,
with major international competitions awarding millions of dollars” worth of prizes
across a variety of different video game genres [Taylor, 2012]. Even for single-player
games, the idea of speed running (finishing a game or achieving some score as fast as
possible) has become an entertaining viewing pastime for watching popular online
streamers beat world records or compete at organised events [GDQ), 2018]. Playing
games is something that we as humans easily connect with and understand to a cer-
tain degree; providing a challenge that sorting numbers into sequence or optimising
bytecode just can’t hope to compete with in terms of engagement. While human

§1.1 Video Games 5

players are currently the best performers at most modern games, it likely won’t be
long before agents can surpass their abilities [Grace et al., [2017].

While the enjoyment and interest that comes from creating agents to play games
that were traditionally designed to challenge humans might be considered rewarding
enough, these agents can often help us to achieve far more. The benefits of working
with and developing agents for video game environments/problems have already
been discussed, along with many possible applications. Most problems that we face
in the real world, where developing successful and reliable agents would prove ex-
tremely useful, can be replicated within a video game, many of which already exist.
The problem of a robot navigating hazardous locations is very similar to that of most
3D adventure games. The task of developing technology for autonomously driving
vehicles is almost identical to playing any modern racing game. Even video games
that may on the surface seem completely irrelevant to any real-world task, very rarely
are so [Togelius, |2015]. However, this is not to say that all games are equal in this re-
gard, as developing agents to play certain types of games can often be more beneficial
than others. The more sophisticated and realistic a game’s mechanics and design are,
then the more likely the Al techniques required to play it will be applicable and help-
ful to other real-world problems (developing an agent that can outperform humans
at StarCraft is clearly a bigger breakthrough than one that beats us at Tic-Tac-Toe).

Aside from the direct gameplay applications previously mentioned, developing
skilled agents for video games can also provide many other benefits. Professional
Chess was significantly affected by the development of chess playing programs,
which helped to identify flaws or strategies not previously considered [Newborn
and Newborn, 1997]]. Allowing different agents to play against each other also pro-
vided players with millions of past example games, leading to new tools for game
analysis and personal improvement. The game of Go has recently undergone a sim-
ilar change with the successful development of AlphaGo [Silver et al) [2016], and it
seems likely that more complex video games are not far behind. Agents can also
help to playtest and find bugs in games before (or even after) they are released to
the general public. One well publicised example of this was a reinforcement learning
agent that was able to find a previously unknown glitch in the popular game Q*bert
(Gottlieb, 1982), over 35 years after the game’s initial release [Chrabaszcz et al., 2018].

1.1.2 Procedural Content Generation

While developing agents that can play games instead of or alongside human players
has many benefits and applications, another key area of recent game Al research is
that of procedural content generation (PCG). PCG can refer to any process where
content is generated with the assistance of an algorithm [Shaker et al., 2016b]. This
can range from minor checks and corrections of content that was primarily made
by human designers, to generating content in a fully autonomous manner without
requiring any manual input [Hendrikx et al., 2013]. Much research, both in academia
and the video game industry, has been focussed on improving the effectiveness of
procedural generation for many different types of content, which can potentially

6 Introduction

include almost all aspects of a game’s design (apart from NPC behaviour or the
game engine) [Togelius et al., 2011]. As video games become increasingly larger and
more graphically impressive, so too does the time and money required to develop
them [losup, 2011; Kelly and Mccabe, 2007]. PCG can provide a way to increase the
variety and replayability of a game significantly, without the need for millions of
dollars and years of development [Amato, 2017].

One of the earliest mainstream examples of PCG being used in a game was for the
video game Rogue (A.L Design, 1980), a randomly generated dungeon exploration
game from which the sub-genre “roguelike” was born [Amato, 2017]. While the
initial benefit of PCG was mainly that it allowed games to be created with a limited
amount of memory, developing games in this way also allowed for a much greater
range of content than could ever be coded by hand [Dahlskog and Togelius, 2012].
While most games might change some small details each time they are played, such
as any game that uses random numbers to influence enemy behaviour or player stats,
PCG can be used to significantly influence almost all aspects of a game’s design
[Browne, 2014]. To develop a PCG system for a game, you need to create both the
individual modular components for the type of content in question, as well as the
method by which they will be combined and what factors will influence this process.
For example, if attempting to procedurally generate a level for a game, you need to
define both the objects that could exist within that level (which themselves could also
be procedurally generated), as well as a system for arranging these objects within the
available level space.

Aside from simply increasing the amount of available content that a game has,
PCG can also be used to create tailored content for a variety of other purposes. One
popular example is using an adaptive or experience-driven generator to create con-
tent based on the behaviour and attributes of the player, thus resulting in more per-
sonalised gameplay [Yannakakis and Togelius, 2011; Oliveira and Magalhaes, [2017].
This personalisation can also be applied specifically to agents rather than human sub-
jects, which presents several unique research possibilities beyond simply improving
agent performance. One alternative motivation is tailoring generation parameters to
create more believable agent behaviour [Camilleri et al., 2016], potentially allowing
agents to appear more human-like when they play and thus more easily pass the
Turing test [Turing), [1950]. Another option is to use a mixed-initiative content gener-
ation approach where human designers are more heavily involved in the generation
process, often providing specific input information that must be adhered to or evalu-
ating the end result for qualities beyond the generator’s understanding [Smith et al.,
2011a} [Liapis et al., 2013, 2016]. Many different aspects of a generator can also be
updated based on how it will be used or applied. Increasing the expressivity of a
generator will give more content variety, while increasing its controllability allows
for more designer influence and control [Togelius et al., 2011} Hendrikx et al., 2013].
Other generation aspects such as its efficiency (i.e. offline vs. online content gener-
ation), generality, reliability or believability, mean that generators often have several
ways in which they can be improved beyond simply creating more content [Shaker
et al., 2016al]. The ideal end goal when developing most PCG algorithms would be

§1.1 Video Games 7

to automatically create content that is indistinguishable from those designed by a
human.

PCG algorithms have previously be used for a wide variety of video game genres
to create and influence many different types of content. This includes individual
gameplay aspects such as levels [Smith et al., 2009; Dormans)| |2010], dialogue [Kerr
and Szafron, 2009]], weapons [Hastings et al., 2009], characters [Griffith, 2018], vehi-
cles [Liapis et al., 2011], rulesets [Smith and Mateas), |2010; Togelius and Schmidhu-
ber, 2008], terrain [Miller, [1986; |Smelik et al., 2009], quests [Riedl et al., 2011} Jeong
et al., 2014], maps [Togelius et al., 2010b} 2013, etc., as well as features that are not
directly related to gameplay such as textures [Ebert et al., 2002; Perlin, 1985; White-
head, 2010], tension/suspense [Lopes et al., 2016; Cheong and Young), |2008|] or even
music [Farnell, 2007; [Edwards, 2011; Boenn et al., 2011]. In terms of the types of
games that PCG can be applied to there are very few exceptions, although exam-
ple genres where it has been successfully implemented before include platformers
[Mourato et al., 2011], racing [Cardamone et al., 2011a], role-playing [Valtchanov
and Brown| 2012], arcade [[Cook and Colton, 2011], stealth [Xu et al., [2014], first-
person-shooter (FPS) [Cardamone et al., 2011b]], roguelike [Stammer et al., 2015] and
real-time strategy [Lara-Cabrera et al., 2015]. One of the main game genres where
PCG has struggled the most with compared to human designers is that of puzzle
games [Alt et al., 2007], where the player needs to achieve some pre-defined goal for
a variety of different levels (some other types of games such as platformers might
also fit this definition). The best puzzles in games typically require the player to
exhibit some form of creative reasoning to solve them, an aspect that often cannot
be easily coded into an algorithm. Properties like difficulty or even solvability of
puzzles/levels are also very hard to estimate, something that agents have previously
been used to help measure [Berseth et al., 2014].

Procedural content generation has also found considerable success when devel-
oping serious games for non-entertainment purposes. This includes tasks such as
modelling natural organisms, plants and ecosystems [Prusinkiewicz and Linden-
mayer), 1996, mapping urban landscapes and road networks [Campos et al., 2015;
Chen et al., 2008], improving education and conflict resolution [Yannakakis et al.,
2010], training rescue services for disaster relief scenarios [Djordjevich et al., 2008],
and developing complex environments for simulated learning [Smelik et al., 2011,
2014]. This last point is especially relevant to many external problems, as the con-
straints and limitations of the game environment being used also play a significant
role in determining the feasibility of any generated content.

Beyond simply being used to improve video games, many of the Al techniques
used in PCG development are relevant to a wide range of other problems. For exam-
ple, techniques that automatically generate realistic and context-sensitive dialogue
for NPCs are heavily related to natural language processing [Gatt and Krahmer,
2018]. Mixed-initiative generation systems for a variety of in-game items, such as
clothes, architecture, or artwork, provide great ways for designers to prototype their
real-world ideas [Smith et al., 2010]. Not only this, but PCG algorithms can often
help to inspire designers with new ideas they might not have previously considered.

8 Introduction

Developing PCG techniques might also allow us to better understand notions of cre-
ativity or design. By analysing an assortment of generated content and determining
which examples are perceived as good or bad and why this is, we can further our
own understanding of the problem space.

1.1.3 Competitions

One of the most common and effective ways to compare multiple Al techniques
for games is with competitions, which attempt to evaluate and rank the best avail-
able algorithms for many different problems. These competitions typically focus on
benchmarking agents for certain games against each other, but other areas of game
Al research, such as content generation, can also be compared this way.

One of the most popular video game series that has used competitions to promote
the creation of agents is that of StarCraft (Blizzard Entertainment, 1998) [Ontafion
et al., 2013} Kim et al., 2016; Weber et al., [2010; Tavares et al., 2016]], as well as its
successor StarCraft 2 (Blizzard Entertainment, 2010) [Siljebrat et al., 2018]. Both these
games are popular two-player, real-time strategy games and are currently believed
to be among some of the hardest games for agents to play (at the time of writing,
agents are not yet at a point in these games where they can outperform most humans)
[Certicky and Churchill, 2017]. The complexity of these games likely stems from the
need to control a large number of independent units with different abilities and
accomplish multiple objectives. As the game requires two opponents to face off
against each other on the same map, there is also a large degree of game theory,
creative reasoning and deception that is often required to win. While agents have
performed well at some aspects of the game, such as precise micromanagement of
several different units [Justesen and Risi, 2017; Shao et al, 2018], they struggle with
the higher-level strategy and planning elements compared to expert human players
[Farooq et al,, 2016]. A handful of map generators have also been created to help
with agent development and evaluation [Togelius et al., 2010b; |Uriarte and Ontanon,
2013].

Another popular video game competition was the Mario Al competition, which
focussed around creating both agents and levels for the game Super Mario Bros. (Nin-
tendo, 1985) [Karakovskiy and Togelius, 2012]. This game behaves very much like a
traditional platformer and requires the player to use multiple different strategies in
order to effectively solve levels. The Mario Al competition was started in 2009 [To-
gelius et al., 2010a] (although it sadly is no longer running) and initially focused on
comparing each agent’s ability to play through several unknown levels. This resulted
in multiple agents being developed that use a variety of Al techniques [Togelius et al.,
2009; Bojarski and Congdon, 2010; Speed, 2010; Perez et al., 2011; Shinohara et al.,
2012; Mora et al) 2014]. A wide assortment of level generators were also created
for the game [Pedersen et al., 2009} Snodgrass and Ontafion, 2014; Mawhorter and
Mateas, 2010; |Smith et al., 2011bj Kerssemakers et al., 2012; Summerville et al., 2015;
Shaker et al., 2012], promoted in part by a short-lived level generation track of the
main competition [Shaker et al., 2011], which have proven useful in helping to im-

§1.2 Physics-Based Games 9

prove the performance of some recent reinforcement learning agents [Isay et al.,
2011; |Pandian, 2013; Lee et al., 2014]. Several other Al competitions which also fo-
cus around games have been run, including the Visual Doom (VizDoom) [Kempka
et al., 2016], Fighting Game AI [Lu et al., 2013], TORCS (racing game) [Loiacono
et al., 2010], Unreal Tournament [Hingston, 2010], and Geometry Friends Coopera-
tive Game Al [Prada et al., 2015] competitions, to name just a few.

Rather than developing Al techniques for specific games or genres, the general
video game Al (GVGAI) competition and research collective instead focuses on de-
veloping algorithms that can either play, or help to create, a large assortment of
unknown games, without having any prior information about how they function
or operate [Perez-Liebana et al., 2016a,b]. These games are each described using a
standardised video game description language (VGDL), allowing new games to be
created quickly and integrated easily. While most of the current games in the GVGAI
corpus are grid-based in their design, several games with continuous environments
have recently been added into its line-up of possibilities [Perez-Liebana et al., 2017].
These games feature a much larger state space than those traditionally used, making
the task of developing general agents or content generators even more challenging.

There are currently five different tracks available for the GVGAI competition, the
single and two-player planning tracks (with forward model), the level and rule gen-
eration tracks, and the single-player learning track (without forward model). The
planning tracks provide agents with access to the game’s internal forward model,
which allows it to see the outcome of any sequence of actions it may take in ad-
vance. This effectively makes the task of playing any game a planning problem, as
a model of the game is provided to the agent beforehand which allows it to search
for a solution before acting [Schaul, 2013]. A large variety of agents with different
approaches for solving these general games have been developed, all of which utilise
the forward model available [de Waard et al.,[2016; Mendes et al., 2016; Nelsonl, [2016;
Pérez-Liébana et al., 2016; Sironi and Winands, 2016|]. For the learning track, agents
are not given access to each game’s forward model. This makes the task much more
suited to a reinforcement learning approach, as agents must explore and learn about
the game’s rules and environment in real time whilst being uncertain of the result
of any action they may take (i.e. agents must learn by trial and error) [Kunanusont
et al., 2017; Torrado et al., 2018]. GVGAI level and rule generators created for their
respective tracks can also be helpful in the agent training process [Neufeld et al.,
2015; Khalifa et al., 2016} Togelius et al., 2012; Nielsen et al., [2015]].

1.2 Physics-Based Games

Physics-based games can technically be defined as any game that uses a physics sim-
ulator to compute the behaviour or motion of certain objects [Renz and Ge, 2015].
Even some of the earliest video games ever created, such as Pong (Atari, 1972), Break-
out (Atari, 1976) and Tennis for Two (William Higinbotham, 1958), used rudimen-
tary physics simulations to determine the outcomes of specific actions [Weiss, [2012].

10 Introduction

While this means that many video games could be defined as physics-based, the
more common use of the term refers to games where realistic physical mechanics
play an important role in their design, and an understanding of said mechanics is
required to play the game effectively. Most elements within a physics-based game
typically possess defined physical properties, such as mass, friction, density, gravity,
location, rotation, etc. The suitable response to any action or movement can then be
determined based on simplified laws of physics, computed internally by the game’s
physics-simulator. The challenge of these games often comes from predicting the
outcome of our actions in advance and planning a sequence of actions that result in
us achieving our desired goal.

A large assortment of physics-based games are currently available to experiment
and test on [Renz and Ge, 2015], the majority of which are puzzle games. Solving
these physics-based games typically relies on the player’s ability to perform phys-
ical reasoning with imperfect information, an ability that all humans possess and
use within our everyday lives. This means that physics-based games are usually
more intuitive to play than other types of games, as the rules and mechanics can
often be learned quickly and easily, while still possessing a high degree of com-
plexity and challenge. As a result of this, such games can be aimed at both casual
and experienced gamers and are becoming far more commonplace within the video
game industry, particularly for mobile and touch screen devices [Juul, 2012]. Ad-
vancements in physics-based games over the years have often resulted in implement-
ing increasingly more sophisticated and realistic physics engines. Some examples
of popular physics-based games include, Angry Birds (Rovio Entertainment, 2009)
(which we will discuss in greater detail in section 1.2.2), Cut the Rope (ZeptoLab,
2010), Where’s my Water (Creature Feep, 2011), The Incredible Machine (Dynamix, 1993),
World of Goo (2D Boy, 2008), Crayon Physics (Petri Purho, 2009), and many others. Sev-
eral physics-based games have also recently been added to the GVGAI game corpus
[Perez-Liebana et al., 2017].

Physics-based games often feature a substantially larger state and action space
compared to more traditional games, which compounded with the imperfect envi-
ronmental knowledge and complex physical simulation calculations, make playing
them a very difficult task for Al agents. This means that games which may ini-
tially appear to be simple and intuitive for us as human players, may in fact be very
hard for an agent to deal with. Generating levels or other content for physics-based
games is also subject to many of the same challenges faced by agents attempting to
play them. Much in the same way that agents need to predict the outcome of any
actions they perform, so must generators consider the feasibility of any content they
create.

1.2.1 Relevance to Real-World Problems

As previously mentioned, one of the main challenges within the field of Al is to
develop intelligent systems that can accurately predict the outcome of actions with-
out complete knowledge of the environment. Humans are naturally very adept at

§1.2 Physics-Based Games 11

this, often being able to predict the consequences of physical actions to a significant
depth. Any Al agent that intends to interact successfully within the physicality of the
real world must possess similar abilities, and consequently this area of research is of
critical importance to the advancement of both Al and robotics [Horvitz, 2008; Stone,
2003; Verschure and Althaus, 2003]. Within the real world, agents cannot guarantee
that all inputs will be accurate and must instead rely on approximations and esti-
mates. Neither can it be assumed that any action performed will be robustly linked
to a desired effect [Ge and Renz, 2013]. The complexity and unpredictability of the
real world makes such presumptions unreasonable, and instead necessitates a more
advanced form of artificial intelligence. Physics-based games provide a controlled
and parameterized environment for testing and evaluating many different solutions
to the problems of reasoning, planning and knowledge representation, all of which
are needed to predict an action’s outcome [Zhang and Renz, 2014]. The lack of con-
sequences within these games also provides us with the opportunity to learn from
our failures, without the risk of serious repercussions.

To sum this idea up in a single sentence: Games that utilise a physics-based
simulation naturally provide a more realistic environment compared to more tradi-
tional games, with the problems posed by solving these physics-based games often
being nearly identical to many real-world problems [Ge et al, 2016]. As an example,
imagine we are designing a robot for a warehouse, whose job it is to move stacks of
boxes from one area of the warehouse to another, and which can only carry a certain
number of boxes at a time. The robot must be able to complete this task, even with
imprecise or unknown information about the physical properties of these boxes. A
robot that might inadvertently knock over some boxes by accident or misjudge how
much support a specific box had would not be useful and could potentially be dan-
gerous. These considerations are very similar to those of some physics-based games,
where structures made of smaller objects need to be built or dismantled (think Tricky
Towers (WeirdBeard, 2016), Angry Birds (Rovio Entertainment, 2009), Besiege (Spider-
ling Studios, 2015) or Crush the Castle (Armor Games, 2009)). While we have already
discussed why developing agents that can successfully play physics-based games at
a level equal to, or potentially better than, that of humans is beneficial to many real-
world tasks, we have not yet focussed on the benefits that developing Al techniques
for creating and analysing content for such games has in relation to real-world envi-
ronments and problems.

Due to the especially large state spaces that physics-based games often have, the
variety and complexity of possible content for them is often considerably greater than
the traditional arcade games typically used for video game research. The whole ben-
efit of testing and developing our methods using physics-based games is that they
provide a safe testbed environment for evaluation and analysis, but this becomes
completely redundant without a sufficient number and variety of evaluation scenar-
ios available. Similarly, reinforcement learning agents also require a large number
of training examples in order to improve. Manually designing the thousands, if
not millions of environmental content variations required for these tasks would be
completely unthinkable. Most physics-based games typically possess a few hundred

12 Introduction

hand designed levels at best and are often highly focussed around player enjoyment
rather than variety of content for agent testing. As a result, using only levels that
are solely designed by humans is probably not the most efficient or unbiased way
of comparing agents. The obvious solution to these problems is to employ Al tech-
niques to aid in the creation of a large variety of digital content, that can then be
used both for evaluating multiple current agents to identify their limitations, as well
as assisting with training or improving the performance of future agent iterations.
This content must be varied in its design, covering a wide range of possible situations
that could occur, as well as being both realistic and feasible, in order to make up for
a whole lifetime of experience that humans possess.

Once we have a large assortment of content available for testing our agent(s),
we then need a suitable method to evaluate their performance and provide insight
into how they might be improved in the future. To accomplish this, we need to
distinguish which cases each agent performs well or poorly on and the likely factors
that resulted in this outcome. Using this information, we can then identify the root
causes of these issues and formulate measures to correct them. Returning again to
the stacking robot example, if we have an example agent that we want to test on this
problem then we must first generate a large variety of example box stacks. Each of
these stacks could contain any number of boxes, each of which could be any possible
size and collectively arranged in any possible shape (as long as the box stack is
initially stable). We can then evaluate our agent’s performance at moving each of
these box stacks across the warehouse, recording the average completion rate, how
long it took, etc., after which we can analyse the resulting data sets for meaningful
information. Perhaps the agent cannot deal with stacks above a certain size, or with
boxes that are packed too closely together.

While developing successful and efficient agents for the real world is the even-
tual goal of this line of research, creating and analysing content for physics-based
environments plays a hugely important role in this process. Without these meth-
ods and resources being available, it seems unlikely that agents will ever be able
to improve substantially to the point where their physical reasoning abilities equal
that of a human. Many of the ideas and techniques that are developed for creating
and analysing content in specific scenarios can also be generalised between different
situations, much in the same way that agent techniques can.

1.2.2 Angry Birds

Having explained the motivation, applications and benefits behind working with
physics-based games, it is time to describe the specific example game that we will
be using to demonstrate our proposed research methods. For the work presented
in this thesis, we will be using the physics-based puzzle game Angry Birds as our
primary testbed. This game was developed by Rovio Entertainment in 2009, and
quickly became one of the most popular mobile games of all time [Rovio} [2018]. This
game was selected for our research primarily because of its semi-realistic physics
environment, simple to understand mechanics, and the numerous prior research,

§1.2 Physics-Based Games 13

Figure 1.1: Screenshot of a level from the Angry Birds game.

software and resources surrounding it. As previously mentioned, this game is also
very popular and well known amongst the general population, making it easy to find
experiment participants who are already familiar with the game. The game’s design
and how levels are played is described as follows:

An example level from the Angry Birds game is shown in Figure 1.1. Each level of
this game gives the player a certain number of birds, which essentially corresponds
to the number of moves or actions that the player has, and tasks them with killing all
pigs within the level. Each of these birds can be one of several types, with each bird
type having different abilities and effects on certain objects. The player can fire these
birds in a pre-determined order using a slingshot that is located on the left side of
the level. The player can identify the fixed order that these birds will be fired from
the slingshot but cannot modify this ordering. Each bird is loaded into the slingshot
one at a time, and the player pulls the slingshot backwards using either a mouse or
touch screen interface (depending on the device being used to play the game). The
location that the slingshot is dragged back to, determines the release point (x, y) for
the bird that is loaded into it, which in turn determines the speed and angle with
which the bird is fired from the slingshot. This release point, along with a tap time
(t) for activating the bird’s special ability if it has one, means that each action the
player makes can be defined as a set of three values (x, y, t). While both the release
point and tap time values can, in theory, be any rational number (i.e. continuous),
they are in practise rounded to some arbitrary level of precision (although the action
space is still extremely large).

Apart from these birds the levels themselves are also populated with many other
objects, often including blocks (which can come in several different sizes, shapes or
materials), solid terrain, the aforementioned pigs (which can also come in different

14 Introduction

sizes), and TNT boxes. These objects all possess certain pre-defined physical at-
tributes (mass, location, rotation, friction, etc.) and behave in a semi-realistic way
when forces are applied to them. Pigs can be killed either by being hit with another
object such as a bird or block at a sufficient speed, falling off high ledges, or by being
caught within an explosion (such as that caused by TNT boxes). Rather than simply
being placed haphazardly around the level space, these objects are often arranged
into a structured pattern that increases the challenge and enjoyment of the level. For
example, blocks are typically placed on top of each other to form complex structures
that protect the pigs, preventing the player from simply targeting the pigs directly. In
order to solve certain levels, players often need to combine multiple objects together
into a chain reaction. For example, a player may fire a bird from the slingshot, which
then hits a round block, causing it to roll down a sloped section of terrain, which
then triggers a TNT box, with the resulting force of the explosion pushing a nearby
pig off a ledge, which then falls to the ground below, resulting in its death. Because
of the sheer number and variety of possible object arrangements within levels, the
state space of Angry Birds, much like its action space, is significantly larger than
most traditional video games.

If the player can successfully kill all the pigs within a level using their available
birds, then they have solved the level. Once a level is solved the player is awarded a
certain number of points based on the number of birds they have left, and the total
amount of damage dealt to other objects within the level. If the player uses up all
their available birds and there are still pigs left within the level, then they have failed
to solve the level and must retry again from the beginning. The problem of solving a
level therefore requires the player to plan out a sequence of bird shots and tap times
(actions) that results in all pigs being killed, while also attempting to score as many
points as possible (uses the fewest number of birds and causes the most damage).

All actions and their consequences within the level are simulated internally using
an underlying Box2D physics engine (box2d.org) based on Newtonian mechanics.
This simulation engine accurately mimics the behaviour of real-world physics, re-
sulting in the movement of objects within the game appearing very natural. As the
player is not privy to the exact physics parameters of the game’s objects, they will
only know the outcome of any action they make after it has been carried out. Player’s
must rely on their own visual and experience-based understanding of the game’s
physics, learned from previous attempts at the game and prior real-world knowl-
edge, to construct a rough conceptual idea of the desired outcome to their actions.
Solving these levels therefore requires a sophisticated understanding of physical and
spatial reasoning based on imperfect information.

Despite the complicated sounding rules and knowledge inference abilities re-
quired to play this game, Angry Birds is typically perceived by many people to be
simple and easy to play [Yoon and Kim, 2015], especially compared to seemingly
more complex games like Chess or Go. When it comes to agent performance how-
ever, solving levels for this game has proved surprisingly difficult using current Al
techniques. Creating and analysing content for this game has also been problematic,
with the lack of a sufficiently large enough number of varied levels for training and

§1.2 Physics-Based Games 15

evaluation likely being one of the main reasons for poor agent performance.

1.2.2.1 Agents

Due to the significance that developing efficient and reliable agents for physics-based
environments has on the future of Al research, the task of developing agents that
can successfully outperform humans at Angry Birds is of considerable importance.
These agents are given the same input as humans (i.e. visual screenshots of the level)
and can perform exactly the same actions. Successfully creating such an agent re-
quires that a substantial number of problems are solved within the fields of machine
learning, computer vision, knowledge representation and reasoning, heuristic search,
planning, and reasoning under uncertainty [Renz et al.,|2015]. These include but are
not limited to; detecting the location and category of objects, learning properties and
behaviours of unknown objects, predicting the outcome of any actions performed, se-
lecting appropriate actions for the given situation, and planning a suitable sequence
of actions. Contributions and improvements in any of these areas would likely help
to enhance the overall performance of agents, but the end goal of a truly intelli-
gent physical reasoning system can only be achieved by developing and combining
effective solutions to all these problems across multiple areas of AL

Creating an Angry Birds agent that can learn to play unknown levels, as well as
or better than the best human players currently available, is by no means an easy
task to accomplish. In addition to the game’s environment having a near continuous
set of states and actions within which the agent must be able to act precisely and
efficiently, the input (i.e. screenshots) received by the agent is often subject to noise or
variations caused by inaccuracies in the computer vision algorithms being employed.
Whilst this by no means makes the input a bad source of information, it means that
parameters such as object sizes, locations, supporting blocks, connecting edges, etc.
are likely to be imprecise. This, coupled with a lack of understanding in terms of
how the game engine itself functions and operates, makes the task seem remarkably
difficult. Another complicating factor is that the exact outcome of an action is only
known after it has been carried out and cannot be perfectly replicated beforehand,
making the consequence of any action very difficult to predict [Renz et al., [2016].

Despite this, most people are able to solve the majority of the levels within the
Angry Birds game relatively quickly and easily. Even young children can pick up the
game and be solving levels within a matter of minutes, without any explanation of
the game’s mechanics. Humans are naturally very adept at making quick judgments
about how a physical system will behave if an external force (in this case a fired bird)
is applied to it, whilst agents typically struggle with this concept of an uncertain or
imprecise outcome. In fact, many of the levels in Angry Birds require the player to
think multiple steps ahead in order to solve them. Whilst this skill is also required
in many other games, Chess being an obvious example, the inability to precisely
predict the outcome of any action in advance, makes it very difficult for an agent to
accurately plan out a sequence of shots. Even if a full model of the environment’s dy-
namics and physics parameters were available or could somehow be learned, there’s

16 Introduction

no guarantee that the processing power required to test thousands of different shot
sequences for each level, or the potential errors caused by the inaccuracies in our
computer vision algorithms, would not render such an approach useless.

The Angry Birds AI (AIBIRDS) competition was first launched in 2012, as a means
to promote the research and creation of agents that can recognise, understand and
complete new Angry Birds levels as well as, or even better than, human players
[Renz, 2015]. So far this competition has attracted dozens of agents and hundreds
of participants from all over the world, with many different state-of-the-art Al tech-
niques being employed to try and solve this challenge. This includes techniques
such as qualitative reasoning [Walega et al., 2016], internal simulation analysis [Pol-
ceanu and Buche| 2013; Schiffer et al., 2016], logic programming [Calimeri et al.,
2016], heuristics [Dasgupta et al., [2016]], Bayesian inferences [Iziortziotis et al., 2016;
Narayan-Chen et al., 2013], and structural analysis [Zhang and Renz, 2014]. How-
ever, none of these agents have ever come close to being able to play unknown levels
better than humans (when averaged over multiple new levels).

During the competition, agents are required to play a set number of unknown
levels within a given time limit, attempting to score as many points as possible in
each level. The exact parameters of certain objects, as well as the current internal
state of the game, are not directly accessible. Instead, information about the level
is provided using a computer vision module which gives approximations of specific
object’s boundaries and location based on screenshots of the game screen. Agents are
required to solve these levels in real time, and can attempt levels in any order and
as many times as they like. Once the time limit has expired, the maximum scores
that an agent achieved for each solved level are summed up to give its final score.
Agents are then ranked based on this value and after several rounds of elimination a
winner is declared. The best agents from each year than face off with a select number
of human participants on a final set of levels. If we can reach a point where agents
can consistently score better than the best human players across a wide variety of
levels, then we can conclude that they have achieved our goal of super-human Al
performance at playing Angry Birds, the benefits and implications of which could
have a significant impact across the Al research community.

A recent expert survey on progress in Al from the Future of Humanity Institute
at Oxford University, found that creating an agent for solving Angry Birds levels was
the AI challenge that had the lowest expected number of years to solve [Grace et al.,
2017], ahead of other popular research games such as StarCraft. We believe that these
researchers have seriously overlooked the complications involved with creating such
an agent, perhaps being deceived by the game’s seemingly simple nature.

To summarise, developing intelligent agents that can play Angry Birds effectively
has been an incredibly complex and challenging problem for current Al techniques
to solve. Humans are naturally very good at predicting the result of a physical action
based on visual information, while agents still struggle with this form of reasoning
in unknown environments. Thus, the Angry Birds game is a useful tool by which
any proposed algorithms can be tested and evaluated. What makes this research on
physics-based games such as Angry Birds so important is that very similar problems

§1.2 Physics-Based Games 17

need to be solved by Al systems that are intended to interact successfully with the
real world. The ability to accurately estimate the consequences of a physical action
and select a sequence of suitable actions accordingly, based solely on visual inputs
or other forms of perception, is essential for the future of ubiquitous Al and has
significant real-world relevance and application.

1.2.2.2 Level Generation

While research into developing Al agents for Angry Birds has been slowly progress-
ing for several years, one aspect that has so far been relatively overlooked in terms
of helping to improve their performance is that of automatically generating Angry
Birds levels. As previously discussed, creating content for agents to train or be eval-
uated on, as well as methods for analysing their performance on certain types of
levels in a meaningful way;, is vital to the development and improvement of agents.
The current version of Angry Birds that is used for the AIBIRDS competition only
has 63 benchmark levels available to all participating teams, which is a significantly
limited amount of available content with which to train or analyse agents. While it
is possible for users to create their own levels by hand, the interface for doing so is
rather cumbersome, effectively requiring that each level be written out by hand in a
text editor. This makes it nearly impossible for any significant agent improvement or
analysis to occur without devoting a great deal of time to creating additional test lev-
els, and makes the application of any reinforcement learning techniques essentially
pointless (as such methods require a substantial amount of training data in order to
perform well).

While the ideal solution to this problem would be to simply create more levels
to train on, the time and resources needed to manually design the required number
of varied levels for any significant performance improvement would be far beyond
any reasonable limits. Instead we will turn to another branch of Al research, that of
procedural content generation. Using this approach, we can generate a huge number
of different Angry Birds levels in a very short period of time. While the variety and
usefulness of the generated levels for training and evaluating agents depends on how
sophisticated the generator is, and while this approach is unlikely to give the same
creativity and complexity as levels designed by humans, this approach is certainly
a far more practical method for creating additional content. These generators can
also be combined with agents to allow them to adapt over time, identifying and
focussing on the agent’s weaknesses and limitations. Instead of controlling the entire
level generation process, mixed-initiative generators could also be used to create
levels based off original human designs. This allows for more creative potential in
a generated level’s overall look, and provides a suitable balance between generation
efficiency and level variety [Campos et al., [2017].

As Angry Birds is a commercial game without an open-source version available,
generating levels for the game presents several difficulties. Level descriptions for
Angry Birds can be generated and loaded into the game, but it is not possible to
manipulate or extend any of the game’s underlying code (e.g. to add additional

18 Introduction

game elements or improve simulation accuracy/speed). Instead we use a Unity-
based clone of the Angry Birds game developed by Lucas Ferreira [Ferreira and
Toledo, 2014]] (dubbed ScienceBirds) which is open-source and available to download
from GitHub!. While the Unity physics engine used by this clone differs slightly from
the Box2D implementation used by Angry Birds, this clone provides many of the
necessary elements to simulate our generated levels in a similar game environment.
Additional software also allows levels to be converted between the Angry Birds and
ScienceBirds description formats?. Agents developed for the AIBIRDS competition
can also play both Angry Birds and ScienceBirds. While the differences between
the game engines can lead to slight variations in agent performance, the majority of
agents perform similarly well on both versions.

This idea of developing multiple level generation techniques for Angry Birds (as
well as other similar physics-based games), along with methods for analysing agent
performance across different levels to produce meaningful and useful results, forms
the main focus of the work presented in this thesis.

1.3 Thesis Outline

1.3.1 Motivation

While the benefits and applications of both procedural content generators and agents
with regard to improving the games themselves have been discussed in previous sec-
tions, the primary motivation that binds together all the research presented in this
thesis is the creation and analysis of content specifically for aiding the development
of new physical reasoning agents, with the game of Angry Birds being used as our
example environment. Even though agents developed for playing Angry Birds have
been slowly improving over recent years, their overall performance has not been sig-
nificantly increasing at the rate that might be expected. Rather than developing new
strategies and approaches for solving Angry Birds levels, the focus of this thesis is on
investigating why, after such a long period of time, agents are still struggling with
simple physics-based games like Angry Birds, and what can be done to improve
their performance in the future. While the difficulties and challenges that physics-
based games pose to agents have already been discussed, these provide little to no
information on how such issues can be overcome. While the creation of additional
evaluation or training levels is a suitable start, it is likely that analysing how agents
perform on different content will yield valuable insights into their current strengths
and weaknesses. Identifying specific limitations that certain agents have will hope-
fully allow us to address them better in the future, rather than simply observing that
our agents do not yet reach the performance standards of a human player. While the
methods and approaches presented in this thesis are specifically designed for and
applied to video game environments, it should be reiterated that they have a great
deal of relevance to many real-world problems.

Thttps:/ /github.com /lucasnfe/Science-Birds
Zhttps:/ / github.com/stepmat/AIBIRDS_level_converter

1.3 Thesis Outline 1
§1.3 9

To summarise, the primary motivation for conducting this research is the current
lack of content creation and analysis tools for aiding the development of Angry Birds
agents. The Angry Birds game has so far proven extremely hard for Al agents to play
due to the many complex challenges that solving it poses, particularly in the field
of physical reasoning. This task is made even more difficult as there are a limited
number of levels available for training or evaluating these agents, as well as a distinct
lack of any substantial analysis into why certain Al techniques perform better or
worse than others across different levels. This led to three fundamental research
questions, the first two of which naturally combine to make the third:

1. Can we use Al to help create more Angry Birds levels?
2. What kinds of levels do Angry Birds agents struggle with?

3. Can we generate levels that emphasise agent weaknesses?

If these three questions can be substantially addressed then this will greatly assist
with the development of agents for Angry Birds, and consequently make the task of
creating agents that can successfully operate within realistic physics-based environ-
ments much more feasible.

1.3.2 Summary

The first task of using Al techniques to create additional Angry Birds levels is fairly
straightforward. Doing this not only increases the amount of available content for
players, but also allows us to effectively create a large number of training and evalu-
ation scenarios for our agents. These levels should be suitably varied in their design
(repeatedly generating the same looking levels over and over again isn’t exactly help-
ful), challenging to solve (levels that can be too easily solved are likely to be uninter-
esting to both an agent and a human), and should also be feasible within the game’s
environment (levels that collapse immediately upon initialisation or cannot even be
completed are likewise uninteresting). The specific Al and PCG techniques used for
creating these additional levels include both fully autonomous and mixed-initiative
approaches.

The second task is to analyse how different agents perform on certain kinds of
levels, and identify any strengths or weaknesses they may have. This information
can then be correlated to the specific Al techniques and strategies used by individual
agents, allowing us to determine the root cause of the observed issues. The results
of this analysis can then be used to improve the performance of agents in the future,
either by allowing developers to directly address the identified limitations, or by
combining their Al techniques together to achieve greater cumulative performance.
We also present an investigation into the computational complexity of physics-based
games, examining why such games are so difficult to solve from a mathematical and
theoretical perspective.

The third task is simply to combine the two previous tasks together, creating an
adaptive level generator that can detect a specific agent’s limitations and empha-
sise these within its generated levels. Achieving this will allow us to automatically

20 Introduction

identify and focus on the specific flaws with certain Al techniques, and would likely
improve the training efficiency of reinforcement learning agents.

1.3.3 Research Paper Contributions

As this thesis is presented as a compilation of published work, each research pa-
per can not only stand on its own individual merits but can also be combined to
collectively address our fundamental research questions. In terms of the individual
research goals and papers presented, we provide here a short summary.

Chapters and {4} each present iterative improvements on the development of
an Angry Birds procedural level generator using a search-based approach. Chapter 2]
presents the initial structure generation process, detailing how individual blocks can
be arranged into a wide variety of complex and stable structures [Stephenson and
Renz, 2016a]. Chapter 3| extends this work to create a preliminary level genera-
tion algorithm, describing how multiple structures, as well as other features such
as the number and placement of pigs and birds, can be determined and arranged
throughout the level space [Stephenson and Renz, 2016b]. Chapter [provides some
additional improvements to create the full level generation algorithm, including gen-
erator enhancements such as block swapping within structures, terrain variation,
TNT placement, improved global stability analysis, and bird /material type selection
[Stephenson and Renz, 2017b].

Another key goal while completing the research for this thesis was to organise
and run a secondary track of the main AIBIRDS competition that focused on level
generation. This would allow additional research groups to apply their own ideas
and expertise to the problem, hopefully resulting in a wider range of level generators
for Angry Birds. This competition was started in 2016 and has since had three annual
events. Chapter 5| presents an overview of the 2017 AIBIRDS level generation com-
petition, as well as descriptions and comparisons of the alternative level generators
that resulted from it [Stephenson et al., 2018¢|.

Aside from using a fully autonomous generation approach for creating Angry
Birds levels, it is also desirable to develop generation systems that allow human users
to have more input on the final level’s design. The search-based generators presented
in the previous chapters, while able to successfully generate a wide range of different
levels, are still limited in the overall variety and creativity of the levels they can
create. Chapter [f| presents an alternative mixed-initiative generator for Angry Birds,
which allows users to define the overall look and aesthetic of the generated levels
by providing input design specifications in the form of a rough sketch [Stephenson
et al., 2018b|]. This generator essentially provides an intuitive, easy and fast way for
human designers to create challenging and creative levels.

In terms of analysing agent performance on certain types of levels, the logical
first step is to determine which basic properties of a given level most affect each
state-of-the-art agent’s performance. This will allow us to identify simple features of
any unknown level that might indicate which agents will perform best on it. This
information can then be used to combine the abilities and skills of multiple agents

§1.3 Thesis Outline 21

together, thus increasing our overall performance. Combining these agents and their
differing approaches may also allow us to gain a better understanding of when or
why some Al techniques work more than others. Chapter 7| presents a methodology
for creating a hyper-agent that has no strategies itself, but instead uses machine learn-
ing to model the performance of each agent in its portfolio based on level features
[Stephenson and Renz, 2017al]. This hyper-agent was tested and evaluated using the
agents from the 2016 AIBIRDS competition and was able to outperform all of them.

However, even with the improved results of our hyper-agent approach, we still
cannot reach the performance of most human players. Because of this, we sought
to understand what design properties of game levels would be most challenging to
state-of-the-art agents for Angry Birds. We observed that most of the current agents
have specific limitations with their approaches that restrict their abilities in certain
situations, such as being unable to plan out a sequence of multiple shots or reason
effectively about the long-term implications of their actions. This analysis resulted
in the creation of a collection of deceptive levels that were designed to compare the
strengths and weaknesses of different agents, and identify conceptual level proper-
ties that they struggled with. This allowed us to identify areas where specific agents
could improve most in the future, but also how far off from human-level performance
the current agents really are. Chapter 8| presents the main deceptive level categories
that were identified for Angry Birds, demonstrates that the overall performance of
different Al techniques and strategies can be significantly affected by certain funda-
mental level design elements, and proposes explanations for the observed disparities
between each agent’s approaches [Stephenson and Renz, 2018]. The poor perfor-
mance of agents on the deceptive levels presented, means that it is important that we
also provide a large amount of manually generated content for agents to train on (i.e.
this further validates the benefits of providing mixed-initiative generation methods
as well as fully autonomous PCG approaches).

Based on the fact that the performance of specific agents for different levels is
clearly influenced by certain features, properties or design elements within them, it
is possible to create an experience-driven level generation system. This system is built
upon the previously described search-based generator, and can be used to adapt the
properties of generated levels over multiple generations based on the performance
of our agent(s). This allows us to identify weaknesses within agents that should be
improved in the future, and also to verify that such improvements have not hindered
the agent’s abilities elsewhere. This process can also enhance the learning efficiency
of reinforcement learning agents, which can repeatedly modify or adjust their strate-
gies in response to the ever-changing problems presented by the generated levels.
Chapter [J] presents an adaptive level generator that can create levels which empha-
sise the strengths or weaknesses of a specific agent, either independently or relative
to the abilities of other agents [Stephenson and Renz, 2019].

As a related side project to the primary goal of creating and analysing levels for
improving agent performance, we also investigated the computational complexity of
solving Angry Birds levels. This theoretical study was inspired by the huge variety
of possible levels available in Angry Birds, as well as the low overall performance

22 Introduction

of the current agents. Several different variants of Angry Birds can be proven either
NP-hard, NP-complete, PSPACE-hard, PSPACE-complete or EXPTIME-complete, de-
pending on the objects available and certain properties of the game’s engine. To the
best of our knowledge, this is the first case of a single-player game variant being
proven EXPTIME-complete. Chapter [10| presents a proof that the original version
of Angry Birds is NP-complete [Stephenson et al., 2017]; while Chapter (11| extends
this proof further to alternative versions of the game, each with different degrees of
complexity [Stephenson et al., 2018a].

Chapter 12| summarises the research contributions and applications of the work
presented in this thesis, and suggests several future possibilities to extend this re-
search further. This includes additional content creation tools, agent performance
analysis methods, and how these techniques can be integrated with existing agents
to help improve their performance. An overview of how each of the papers pre-
sented in this thesis addresses our fundamental research questions, and how each
topic inspired or motivated subsequent research, is presented in Figure 1.2.

While the methods and research components presented in this thesis have their
own individual uses, the overall long-term goal is to create intelligent physical rea-
soning agents that can operate successfully within the real world. Achieving this
goal is not something that can be accomplished overnight, and might take decades
more research to accomplish. The methods presented here are just a small sec-
tion of an increasingly large body of work on generating and analysing content for
physics-based simulation environments. Nevertheless, we believe that the contribu-
tions made within this thesis are significant and can provide a great deal of assistance
to developers wishing to improve their existing agents, both for Angry Birds as well
as other physical reasoning problems.

§1.3 Thesis Outline

23

1. Can we use Al to
help create more
Angry Birds levels?

Angry Birds PCG

"Procedural Generation of
Complex Stable Structures
for Angry Birds Levels"
(Chapter 2)

"Procedural Generation of
Levels for Angry Birds
Style Physics Games"

(Chapter 3)

"Generating Varied, Stable
and Solvable Levels for
Angry Birds Style Physics
Games"
(Chapter 4)

2. What kinds of levels
do Angry Birds agents
struggle with?

"Creating a Hyper-Agent
for Solving Angry Birds
Levels"
(Chapter 7)

3. Can we generate
levels that emphasise
agent weaknesses?

Agents perform
better at certain
levels than others

Presented
level generator
compared
against other
alternatives

\ 4

Generator does

not adapt to how
the agent performs

Identify conceptual level
properties that certain
agents struggle with

\ 4

\ 4

\ 4

"The 2017 AIBIRDS Level
Generation Competition"
(Chapter 5)

Autonomous Angry Birds
level generators are limited

Develop an intuitive
way for humans to

create creative and
challenging levels

"Deceptive Angry Birds: "Agent-Based Adaptive
Towards Smarter Game- Level Generation for
Playing Agents" Dynamic Difficulty
(Chapter 8) Adjustment in Angry Birds"
(Chapter 9)

How hard are Angry Birds
levels from a mathematical
and theoretical perspective

in the variety and complexity
of levels they can make ¢

\ 4

"Generating Stable,
Building Block Structures
from Sketches"
(Chapter 6)

"The Computational
Complexity of Angry Birds
and Similar Physics-
Simulation Games"
(Chapter 10)

"The Computational
Complexity of Angry Birds"
(Chapter 11)

Figure 1.2: Thesis overview, describing how each research component inspired or
motivated the next.

24

Introduction

Chapter 2

Procedural Generation of Complex
Stable Structures for Angry Birds
Levels

2.1 Foreword

This paper presents a search-based procedural structure generation algorithm for
Angry Birds. This is an autonomous generation algorithm and does not require any
designer input to function. Successfully generating stable and complex structures is
just one part of what makes an Angry Birds level interesting, but this is a crucial first
step towards developing a full level generator.

2.2 Paper

M. Stephenson,]. Renz, Procedural Generation of Complex Stable Structures for
Angry Birds Levels, IEEE Computational Intelligence and Games Conference 2016 (IEEE-
CIG’16), Santorini, Greece, September 2016, pp. 178-185.

25

26 Procedural Generation of Complex Stable Structures for Angry Birds Levels

Procedural Generation of Complex Stable
Structures for Angry Birds Levels

Matthew Stephenson
Research School of Computer Science
Australian National University
Canberra, Australia
matthew.stephenson @anu.edu.au

Abstract—This paper presents a procedural content generation
algorithm for the physics-based puzzle game Angry Birds. The
proposed algorithm creates complex stable structures using a
variety of 2D objects. These are generated without the aid of
pre-defined substructures or composite elements. The structures
created are evaluated based on a fitness function which considers
several important structural aspects. The results of this analysis
in turn affects the likelihood of particular objects being chosen in
future generations. Experiments were conducted on the generated
structures in order to evaluate the algorithm’s expressivity. The
results show that the proposed method can generate a wide
variety of 2D structures with different attributes and sizes.

I. INTRODUCTION

Procedural content generation (PCG) is a major area of
investigation within the video game industry [1]. It is typically
defined as the automatic creation of aspects of a game which
affect gameplay other than non-player characters (NPCs) and
the game engine [2]. PCG is commonly used to create new
unique experiences for players without the need to design
every possibility manually. This can dramatically cut a game’s
development time, as well as increasing available content and
reducing memory consumption [3]. PCG can also be used to
learn about the player’s abilities and adapt the game’s content
accordingly [4].

Previous research has investigated the use of PCG for
many different types of game content, including vehicles
[5], weapons [6] and rulesets [7]. Level generation, or the
generation of certain level aspects, is one of the most popular
uses of PCG and has been implemented in many different
game types. These include real-time strategy games [8], role-
playing games [9], platform games [10], racing games [11]
and arcade games [12].

Physics-based puzzle games such as Angry Birds, Bad
Piggies, Crayon Physics and World of Goo have increased
in popularity in recent years and provide many interesting
challenges for PCG. However, as far as we can tell, very little
research has been done on this particular area of PCG. A small
collection of studies have explored PCG for the physics-based
game Cut the Rope [13], [14], as well as the popular mobile
game Angry Birds [15], [16], [17].

Physics-based games make PCG more difficult for a variety
of reasons. Firstly, there are typically many constraints that
dictate the types of content that can be created. Any PCG

Jochen Renz
Research School of Computer Science
Australian National University
Canberra, Australia
jochen.renz@anu.edu.au

algorithm must be aware of the physical limitations of its
environment and create content that functions as expected, e.g.
a procedurally generated car must be able to drive and steer.
Secondly, the state and action spaces are typically very large.
This makes the task of determining if a procedurally generated
level can be completed extremely difficult, especially for
increasingly complex levels and content. Lastly, the variety of
content that the algorithm can create must not be significantly
reduced by any constraints imposed. The main appeal of PCG
is that a large and diverse range of content can be created.
Designing algorithms with restrictions that are unnecessarily
strict will severally limit its PCG capabilities.

Previous research into PCG for Angry Birds has been rather
basic in terms of the complexity of the structures they generate.
These prior methods create Angry Birds levels by generating
columns of either single objects or small predefined structures
[16]. These columns are then recombined using simple genetic
algorithms in an attempt to maximize structural stability [15],
[17]. Whilst this method is suitable for creating primitive
structures in Angry Birds levels, it cannot generate anything
more complex than an array of single columns.

This paper presents a search-based procedural content gen-
erator for the Angry Birds game which can create complex
stable structures using a variety of different objects. The
structures are evaluated using an improved fitness function
which measures various important aspects. These include
the structure’s block count, pig count, aspect-ratio and pig
dispersion. The probability of selecting certain block types
during the construction process is evolved over successive
generations, using this function as the optimisation criterion.

Several experiments were conducted to analyze the expres-
sivity and of the structure generator. Metrics such as frequency,
linearity, density and leniency were calculated to describe the
characteristics of the content generated.

II. ANGRY BIRDS

Angry Birds is a physics-based puzzle game where the
player uses a slingshot to shoot birds at structures composed of
blocks, with pigs placed within or around them. The player’s
objective is to kill all the pigs using the birds provided. A
typical Angry Birds level, as shown in Figure 1, contains a
slingshot, birds, pigs and a collection of blocks arranged in

§2.2 Paper

27

Fig. 1: Screenshot of a level from the Angry Birds game.

. .4
' 13
- .
10
—_——
3 12
y N

Fig. 2: The thirteen different block types available.

one or more structures. The ground is usually flat but can vary
in height for certain difficult levels. Each block in the game
can have multiple different shapes as well as being made of
several possible materials.

Angry Birds is a commercial game developed by Rovio
Entertainment who do not provide an open-source version
of their code. Instead we use a Unity-based clone of the
Angry Birds game developed by Lucas Ferreira [15], which
is open-source and available to download from GitHub. This
clone provides many of the necessary elements to simulate
our procedurally generated structures in a realistic physics
environment. There are currently eight different rectangular
blocks available, of which five can be rotated ninety degrees to
create a new block type. This gives a total of thirteen different
block variants with which to build our structure, see Figure 2.
Each block is also assigned one of three materials (wood, ice
or stone), bringing the number of possible options to thirty
nine.

III. PROCEDURAL STRUCTURE GENERATION

The proposed structure generator operates by recursively
adding rows of blocks to the bottom of the already generated
structure. This process continues until a desired number of
rows are reached. Unlike previous methods, our structure is
created using only the original block types and does not require
any composite elements to be created prior to structure gener-
ation. This vastly increases the number of possible structures
that can be constructed, whilst also allowing greater algorithm
flexibility to satisfy conditions and restrictions which may
be imposed. The complexity of a generated structure can be
defined in a manner similar to that of Kolmogorov complexity
[18]. The extensive amount of variation that can occur within
each structure, including the number, size, orientation and

Algorithm 1 Structure Generation

currentRow < 1

blockType <+ Select BlockType(probabilityT able)

currentStructure < InitializeFirst Row(blockType)

while currentRow < desiredRow do
subsets < SubsetCombinations(currentStructure)
blockT'ype «+ Select BlockType(probabilityTable)
currentStructure < AddRow(blockType, subsets)
currentRow < currentRow + 1

end while

PopulateStructure(currentStructure)

EvaluateStructure(currentStructure)

I S o RN o

—_——

=]

B

Fig. 3: The bottom row of this structure has three possible subset combina-
tions: each block is in a separate set (red), all blocks are in a single set (blue),
and the three left/right blocks are partitioned into two sets (green).

positioning of blocks used, allows our generator to create a
diverse range of complex structures. Algorithm 1 provides
an overview of the proposed generator, with a more detailed
explanation given below.

A. Structure Generation

First, a starting block type is selected at random from all
possible variants. This block type will become the peak(s) of
the structure, beneath which all other blocks will be placed.
For our implementation up to three blocks can be placed at
the top of the structure at varying distances apart, with the
number of peaks being chosen at random. Initially we are
only concerned about the local positions of blocks relative to
each other with the world positions being calculated after the
structure has been fully generated.

After the first row has been initialized we recursively add
more rows of blocks to the bottom of the currently generated
structure. The blocks at the base of the structure are split into
subsets based on the distances between them. All possible
subset combinations are then recorded, see Figure 3. A new
block type is then selected at random. For each possible subset
combination there are now three possible supporting block
placement options:

« Blocks are placed underneath the middle of each subset.

o Blocks are placed underneath the edges of each subset.

« Blocks are placed underneath both the middle and edges
of each subset.

All three of these possibilities are shown in Figure 4. Each
of these options is created for all subsets using the selected
block type, after which they are tested for validity. Any case
where blocks overlap each other is deemed invalid and is
removed as a possible option. In addition, each object in the
structure’s bottom row is tested for local support by the new

28 Procedural Generation of Complex Stable Structures for Angry Birds Levels

Epams

(a) (b) ©
Fig. 4: The three possible supporting block placement options for a single
block subset: middle (a), edges (b), both middle and edges (c).

(a) (®)
Fig. 5: An example of a generated structure (a) and its corresponding directed
acyclic graph representation (b).

row. Each block in the bottom row of the current structure
must be supported from below, either at its middle position or
both of its edge positions. Any case that does not fulfil this
requirement is also deemed invalid. After validity checks have
been performed for all possible supporting block locations and
subset combinations, one of the valid options is selected at
random. If no valid options are available then a new block
type is selected and the process repeated. The selected option
is then used as the structure’s new bottom row. This process is
repeated until the desired number of rows is reached. Once the
structure is complete each block is assigned a random material.
Any structure generated using this method can be depicted
as one or more directed acyclic graphs, with each node
representing a specific block. Each block is a descendant of
the blocks that it supports (supportees) and subsequently an
ancestor of the blocks that support it (supporters), see Figure
5. This can be extremely useful for other stability analysis
techniques, such as identifying structural weak points [19].

B. Pig Placement

Once the structure has been fully created it is populated with
pigs. First, the space directly above the middle of each block
is analyzed to see if there is space for a pig to fit such that it
doesn’t overlap any other blocks. If this is not possible for a
particular block then the positions directly above the edges of
the block are checked as well. Any positions that are found to
be big enough to place a pig are recorded. Next, we test all
the possible ground positions that are within the structure (to
a set precision). Again we check for any overlap with nearby
blocks and valid positions are recorded. We then randomly
choose a position from all the valid possibilities and place a
pig at the given location. Any remaining pig locations that
would overlap the newly placed pig are removed and another
location is chosen at random. This continues until there are no
more valid locations or a desired number of pigs is reached.

Fig. 6: An example structure that has local stability but is globally unstable.

This process ensures that the structure will always contain at
least one pig, as a pig can always be placed on top of the
structure’s peak block(s).

C. Global Stability Analysis

Whilst our structure generation method ensures that each
block has local stability, the global stability of the structure
must be determined after its construction, see Figure 6. As
all the relevant physics parameters (mass, density, friction and
location) of blocks and pigs are known beforehand we can
calculate the global stability of our structure exactly [20]. It
is also possible to use qualitative stability analysis techniques
to estimate the stability of the structure more quickly, whilst
sacrificing some accuracy [21] [22]. Unfortunately, the Unity
Engine upon which the Angry Birds clone is based suffers
from simulation inaccuracies. These minor discrepancies cause
structures which are theoretically stable to collapse within the
simulation if given enough time. Currently, the only way to be
certain that the structure will not collapse in this environment
is to place the structure within a level and record if any blocks
move a significant distance from their origin point [15]. If the
structure is deemed unstable using the chosen approach then
it is abandoned and a new structure is generated.

D. Structure Placement

Once the structure has been fully generated it can be placed
within the Angry Birds level. For the clone implementation,
levels are specified as xml files with the block and pig
locations given as coordinates in world space. First, we take
the bottom row of our structure and place it on top of the
level’s ground (the location of the ground is fixed within the
level). We then continue adding additional rows on top of the
structure’s base until all rows have been placed. Pig locations
are then converted to their corresponding world coordinates
and placed within the level as well. It is also possible to place
multiple structures within the same level at different locations.

IV. FITNESS FUNCTION

In order to evaluate individual structures against each other
we define a fitness function to measure certain desirable
properties. This fitness function calculates a fitness value for
a given structure, with a lower fitness value indicating a more
desirable structure. A fitness function has been proposed in
previous Angry Birds papers [15], [16] for a similar reason
but we believe it has several limitations in its current form.
The original fitness function takes into account the structure’s

§2.2 Paper 29

simulated velocity over time (used to measure the stability of
the structure) as well as the number of blocks and pigs used.
Our method analyzes stability outside of the fitness function,
automatically rejecting a structure if it is deemed unstable.
This provides the user with more freedom over which approach
to use and will allow any new stability estimation techniques
to integrate seamlessly with our algorithm. Our fitness function
also improves upon the previous implementation by updating
the analysis of certain parameters, as well as proposing some
new ones of our own. These can be separated into four distinct
factors, number of pigs, number of blocks, structure aspect
ratio and pig dispersion; each of which can affect the fitness
value of a structure. We believe that this new function provides
a broader and more sophisticated analysis of the structures
generated by our algorithm.

A. Number of Pigs

This is the only component of the original fitness function
that has not been altered. Simply put, the more pigs that are
present within a structure the more desirable the structure. |p|
is defined as the total number of pigs in the structure. This
section of the fitness function is described by equation (1):

1
1+ Ip| M

B. Number of Blocks

The original fitness function defined this component as the
difference between the desired and actual number of blocks,
divided by the difference between the maximum and actual
number of blocks. While this was appropriate for simple
columns of blocks it becomes very impractical when used
for more complex structures. This is because the maximum
number of blocks that a structure could theoretically contain
grows exponentially as the number of rows increases. For
example, a ten row structure generated using our method
typically contains between twenty and sixty blocks, but the
maximum number it could theoretically contain is 88,572
(structure with three peak blocks and each block having
three supporting blocks). This means that the value for this
component of the fitness function will become insignificant for
any structures with a medium to high number of rows. Instead,
we suggest a more suitable calculation, where the difference
between the desired number of blocks B and the actual number
of blocks |b| is multiplied by a set factor X . This factor is used
to adjust how much of an impact the difference between the
desired and actual number of blocks has on the structure’s
overall fitness value. This section of the fitness function is
described by equation (2):

X (v (B —1b])?) 2

C. Structure Aspect Ratio
One of the new components that we have added to our
fitness function is the structure’s width to height ratio (aspect
ratio). Similar to the previous component, the maximum aspect

ratio for any structure can be extremely large depending on the
number of rows. This means that any attempt to normalize the

ratio by dividing by the maximum would severely reduce the
effectiveness of this component. Instead, we simply multiply
the difference between the desired ratio R and the actual ratio
|r| by a set factor Y. This factor is used to adjust how much
of an impact the difference between the desired and actual
structure aspect ratio has on the structure’s overall fitness
value. This section of the fitness function is described by
equation (3):

Y (v (R—1r[)?) ©)

D. Pig Dispersion

The other component that we have added to our fitness
function is the dispersion, or spread, of pigs throughout the
structure. The theory here is that structures with pigs located
throughout them will be more desirable than structures with
the pigs all grouped together. There are several methods that
are currently available for measuring the spread of points (or
in ours case pigs) throughout a 2D space.

1) Variance from center point: This method estimates the
dispersion of pigs by calculating the variance for the Euclidean
distance between each pig’s position and the mean position of
all pigs. This value is then normalized by dividing it by the
length of the diagonal of the structure’s bounding box.

2) Mean nearest neighbor distance: This method estimates
the dispersion of pigs by calculating the mean of the nearest
neighbor distances for each pig [23]. This value is then
normalized by dividing it by the length of the diagonal of
the structure’s bounding box.

3) Morisita’s index of dispersion: This method first divides
the structure’s bounding box into a set number () of equally
sized quadrats. The number of pigs in each quadrat n; is then
counted and used together with the total number of pigs N
to calculate Morisita’s index of dispersion [24], described by
equation (4):

Zinl m(ni — 1)

N(N -1))

4) Pig surrounding area overlap: This method was created
specifically to address limitations which were identified in the
previous methods and so provides a robust estimation of pig
dispersion. First, the total width and height of the structure is
divided by the square root of the number of pigs. A rectangle
with this new width and height is then placed at the location
of each pig within the structure. If none of these rectangles
overlap then their total area would equal the area of the
structure’s bounding box. However, it is likely that some of
these rectangles will overlap those that are nearby, resulting
in a lesser value. The total area that all the rectangles cover is
then calculated and normalized by dividing it by the area of
the structure’s bounding box (maximum possible area).

5) Comparison of methods: Whilst all the methods de-
scribed above give suitable estimations of pig dispersion for
the majority of generated structures, there are several cases
where they can give unreliable results. To compare all the
methods, each was tested on four different structures, see
Figure 7, and the results are given in Table I.

MI = Q(@)

30 Procedural Generation of Complex Stable Structures for Angry Birds Levels

TABLE I
COMPARISON OF PIG DISPERSION ESTIMATION METHODS
Mean Mean Morisita’s Surrounding
Variance Nearest Index of | Area
Neighbor Dispersion Overlap
Structure a | 0.7314 0.0763 0.3333 0.5782
Structure b | 0.3613 0.2568 0.6667 0.8908
Structure ¢ | 0.1592 0.0763 0.2778 0.3263
Structure d | 0.5092 0.0763 0.5556 0.5958

In Figure 7, we can see that although the pigs are more
dispersed in (b) than in (a) the mean variance from center
point was higher for (a) than (b). This is because this method
essentially rewards structures with pigs placed away from
the center point, rather than structures with pigs dispersed
throughout. A single grouping (c) would correctly give a very
low dispersion value but two separate groupings results in an
incorrect estimation.

In Figure 7, we can also see that although the pigs are
more dispersed in (d) than in (c) the mean nearest neighbor
distance is the same for both. This is because this method only
uses the distance between each pig and its nearest neighbor
to estimate pig dispersion. Having groupings of two pigs at
multiple locations gives the same value as having all pigs at
one location.

The problem with Morisita’s index of dispersion is that
although it gave good estimations for the structures tested, it
relies on the number of quadrats to be chosen effectively. For
this comparison, we created nine quadrats (3x3) but a different
number of quadrats would have yielded quite a different result.
This means that this method is only accurate when there are a
large number of pigs available, so that each quadrat contains
a sufficient number of pigs to be representationally accurate.

Our own method for estimating pig dispersion, based on
measuring the overlap of each pig’s surrounding area, per-
formed well in all cases and can be normalized effectively.
This method was therefore chosen to be used in our fitness
function, where d defines the dispersion value. The set factor
Z is used to adjust how much of an impact the dispersion of
pigs has on the structure’s overall fitness value. This section
of the fitness function is described by equation (5).

Z(1 - d) 5)

E. Complete Fitness Function

The sum of all these separate components for number
of pigs, number of blocks, structure aspect ratio and pig
dispersion makes up the complete fitness function, described
by equation (6):

F=qm + X(/(B= b)) +Y(/(R-|r))?) +Z(1—d) (6)
V. PROBABILITY TABLE

Instead of randomly selecting a block type during structure
generation in an unbiased manner, a probability table can
be used to alter the chance of a particular block type being
selected. Each of the block types available is allocated a
probability of being selected, with all probabilities summing

to one. Whilst this probability table allows for more designer
control, it can also be optimized automatically using a training
algorithm and our fitness function. The training algorithm
attempts to find structures which minimise the fitness function
for the given parameters. Each training algorithm iteration
creates nine different structures (a single generation) and uses
the fitness function to rank them from most desirable (R = 9)
to least desirable (R = 1). The frequency of block types
in each structure is then used to update the corresponding
sections of the probability table using equation (7):

L Ly (Sm) (R = 5)
n Z;:l (S R)

P; represents the probability table value for block i, Sg;
represents the number of ¢ blocks that the structure with
rank R contains, Si represents the total number of blocks
that the structure with rank R contains, and n is an update
factor which influences the speed at which the probability table
values converge. If the probability table value for any block
type is more than one then it is reduced to one. Likewise,
any probability table value less than zero is increased to zero.
After the probability table has been fully updated the values
are renormalized so that they again sum to one. The probability
table can be updated recursively over many generations using
this technique.

The ability to update the probability table with the fitness
function can be used to provide greater direction over what
types of structures are created. Each component of the fitness
function can be weighted to indicate how much emphasis
should be placed on each factor. This allows the user to alter
the parameters of the fitness function and hence tailor the out-
put of the structure generator to suit their needs. For example,
if the user prefers structures that are tall and thin, rather than
wide and short, then the desired structure aspect ratio is set
very low and the corresponding section of the fitness function
weighted to give more of an impact on the structure’s overall
fitness value. The probability table is then repeatedly updated
using this fitness function, after which the mean aspect ratio
of structures generated using this new probability table will be
less than before. Whilst this method does not guarantee that
certain requirements will be met (e.g. the structure’s height
must be greater than its width) it can be used to improve the
probability of such a structure being created without severely
restricting the generator’s expressivity.

P =P

Q)

VI. EXPERIMENTS AND RESULTS

Several experiments were carried out to test different com-
ponents of the structure generator and fitness function.

A. Probability Table Optimisation

As previously discussed, a probability table for block type
selection can be optimized over many generations using our
specified fitness function. We therefore updated our probability
table over 200 separate generations, with nine structures in
each generation, for a total of 1800 structures. Each structure
had ten rows and for our fitness function we defined: B = 40,

§2.2 Paper 31

(©)

Fig. 7: Four structures with the same block placement but with different pig dispersions.

0.4
0.35 S <>
0.3
0.25 4n=10
£
2 02 * En=100
3 }
£ o015 An=1000
o1 1424'7'
' B A & 4 A A
s M8 g Mg A" s
+ | |
R A
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Block Number

Fig. 8: Probability table values for each block type after 200 generations.

R=20,X=0.01,Y =0.2and Z = 1.0. We then compared
three different update factors of n = 10, n = 100 and n =
1000, with the probability for each block type initially set to
1/13. The result of this experiment is illustrated in Figure 8.

For n = 10, only five block types had a probability greater
than zero. These were block types 1, 2, 8, 10 and 12, with
block types 1 and 10 taking almost 70% of the probability
between them. This is a clear indication that the update factor
is set too low, as once the probability for a block type is near
zero it is very difficult for it to increase again. This places an
overemphasis on the fitness function, increasing the likelihood
of creating a desirable structure, but greatly reducing the range
of structures that can be generated.

For n = 1000, the probability values changed very little
even after 200 generations. This suggests that the update factor
is set too high and that the probability table values are not
being updated by a significant amount for each generation.

For n = 100, the probability values have been updated
a reasonable amount but the change is not so large as to
significantly reduce the structure generator’s expressivity. The
probability values for block types 1, 2, 6, 8, 10 and 12
increased, whilst the values for block types 3, 4, 5, 7, 9, 11
and 13 decreased.

As a result of this experiment, an optimized probability
table was created using 200 generations and n = 100 for

(C))

each of three different row values, five, ten and fifteen.
These probability tables were then used when analyzing the
generator’s expressivity.

B. Expressivity analysis

Expressivity analysis has been described and implemented
in many previous content generation papers as a means of
comparing and contrasting different techniques. This is typ-
ically expressed as a metric which indicates the generator’s
strengths and weaknesses in various capacities. In this paper
we define four measures based on metrics used in previous
research [14], [15], [25]: frequency, linearity, density and
leniency. Frequency evaluates the number of times that a block
occurs within a structure. Linearity measures the width and
height of each structure. Density provides a measure for the
amount of ’free space’ within a structure. Leniency estimates
the difficulty of a structure, taking into account pig and block
numbers. These metrics will allow our structure generator to
be compared against any future methods. Presently however,
there are no suitable prior algorithms with which to compare
ours against.

For our experiments we generated 200 stable structures for
each of three different row values, five, ten and fifteen. Each
of these 200 structure groups was then sampled to find the
average and standard deviation for the frequency, linearity,
density and leniency. Example structures created using our
generation algorithm are displayed in Figure 9.

Figure 10 shows the results of frequency sampling for
structures with five rows. The average number of blocks is
12.72 with a standard deviation of 7.08. The average number
of pigs is 3.07 with a standard deviation of 1.92. Figure 11
shows the frequency results for structures with ten rows. The
average number of blocks is 27.39 with a standard deviation
of 14.07. The average number of pigs is 4.93 with a standard
deviation of 3.28. Figure 12 shows the frequency results for
structures with fifteen rows. The average number of blocks is
47.07 with a standard deviation of 24.59. The average number
of pigs is 7.54 with a standard deviation of 5.44.

The increase in pig numbers for structures with more rows
is likely due to the increased number of blocks and hence the
increased availability of viable pig locations. However, the pig

32 Procedural Generation of Complex Stable Structures for Angry Birds Levels

()

4
35
3
2.5
: I
g 2
=S
@15
fr
1 -
0.5
0 -
L L T L~ T T - T TR R, Vg PR S -
& & F &S F c‘.‘} c‘.‘} C*‘N c‘}"\' <
T T P T T DGO @
Object Type

Fig. 10: Average and 95% confidence interval for block type frequency in
structures with five rows.

6
5
4

z

53 T T

=

g

= 24 =
1,
0_
IR R S I SRS A)
N N N SRR LN SN SN LN L s s s
X DT QG o0 ¢

Object Type

Fig. 11: Average and 95% confidence interval for block type frequency in
structures with ten rows.

Frequency

O B N W & U O N 0 W
|

Object Type

Fig. 12: Average and 95% confidence interval for block type frequency in
structures with fifteen rows.

(®) (©

Fig. 9: Three example generated structures with five rows (a), ten rows (b) and fifteen rows (c).

frequency relative to the block frequency was much greater for
smaller structures than the larger ones. This is probably caused
by the fact that the total number of pigs within a structure has
a much greater impact on the fitness function for structures
with a low number of blocks.

The relative frequencies of each block type also varied for
structures of different sizes. Structures with fewer rows tended
to favour smaller block types such as 5 and 7. This was likely
due to the fact that their small width allowed more of them
to fit within each row, which increased the total block count,
and their small height meant that they did not decrease the
structure’s aspect ratio as much as taller blocks. Structures
with more rows tended to favour the wider block types, as
these both decreased the total block count and increased the
structure’s aspect ratio.

Linearity was measured using both the average width (uy)
and height (up) of all generated structures for each row
amount, see Table II. The large standard deviation (o) shows
that the structures created can differ greatly in terms of their
width and height, indicating a large variation in the block
arrangement of the generated structures.

The density of a structure was measured by summing the
areas of all blocks within the structure and dividing this by the
total area of the structure itself, including all sections of empty
space that it contains. The average density (up) for each row
amount, as well as the standard deviation (o), is provided in
Table II. The density of a structure appears to decrease as the
number of rows increases, meaning that larger structures are
likely to have more empty space within them and are therefore
less robust than their smaller counterparts.

For many prior and current content generation methods,
leniency is measured by analyzing the presence of certain
objects within the subject [25], [26]. For this experiment we
defined leniency using the number of pigs |p| and blocks |b]
that are present within the structure, described by equation (8):

Leniency = —2|p| — || (8)

Although primitive, this formula gives a rough estimate of
how difficult it will be to kill all the pigs located within
the given structure. The average leniency (i) for each row
amount, as well as the standard deviation (o), is provided in
Table II. The leniency of a structure can be seen to increase
with the number of rows, due to the expanded number of
blocks and pigs that are present within the structure. This

§2.2

Paper 33

TABLE II
LINEARITY, DENSITY AND LENIENCY FOR STRUCTURES WITH 5, 10 AND

15 Rows

Rows | Width Height Density Leniency

(pw o) (pm|o) (uplo) (1rlo)

5 2.651|1.727 | 2.841]0.995 | 0.701]0.186 —18.86|10.22

10 3.631|1.765 | 5.749]1.563 | 0.653|0.169 —37.25|17.14

15 6.349|2.450 | 6.353|1.274 | 0.612|0.126 —62.15|25.92

information can be used to influence other important aspects
within the Angry Birds game, such as the number of birds
provided or the ordering of certain levels.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented a search-based procedural content
generation algorithm for creating complex stable structures
within the video game Angry Birds. The algorithm builds
structures using a top-down approach, with block types se-
lected using a specified probability table. Each generated
structure is symmetrical and can be represented as a directed
acyclic graph. The structures created are populated with pig
targets and analyzed for global stability. Other factors such
as a varying number of peaks, multiple locations for support
block placement and several possible materials, ensure that the
range of possible structures is extensive and diverse.

Each generated structure is evaluated using a fitness function
which considers the pig number, block number, aspect ratio
and pig dispersion. This function can also be used to evolve the
probability table by updating each block’s chance of selection
over many different generations. Each section of the fitness
function can also be given a different weighting, allowing
the user to define which aspects of the structure are most
important.

Our structure generator was evaluated in terms of its expres-
sivity and optimization potential. Four metrics were defined
to investigate important aspects of the generated structures:
frequency, linearity, density and leniency. The results of this
analysis demonstrated that our structure generator can create
a wide range of structures with many different attributes.

Future work could be to develop algorithms which create
structures that can contain multiple block types and angles
within each row. Additional research could also be conducted
into estimating the number of birds required to kill all pigs
within a given structure. This information could then be
combined with our structure generation algorithm to create
a full procedural level generator for Angry Birds.

REFERENCES

[1] M. Hendrikx, S. Meijer, J. V. D. Velden, and A. Iosup, “Procedural
content generation for games: A survey,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 9, no. 1, pp. 1-22, 2013.

[2] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” [EEE
Transactions on Computational Intelligence and Al in Games, vol. 3,
no. 3, pp. 172-186, 2011.

[3] S. Dahlskog and J. Togelius, “Patterns and procedural content genera-
tion: Revisiting mario in world 1 level 1,” in Proceedings of the First
Workshop on Design Patterns in Games. ACM, 2012, pp. 1:1-1:8.

[4] G.N. Yannakakis and J. Togelius, “Experience-driven procedural content
generation,” IEEE Transactions on Affective Computing, vol. 2, no. 3,
pp. 147-161, 2011.

[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

(24]

(25]

[26]

A. Liapis, G. N. Yannakakis, and J. Togelius, “Optimizing visual prop-
erties of game content through neuroevolution,” in Artificial Intelligence
for Interactive Digital Entertainment Conference, 2011.

E. J. Hastings, R. K. Guha, and K. O. Stanley, “Evolving content in
the galactic arms race video game,” in Computational Intelligence and
Games, 2009. CIG 2009. IEEE Symposium on, 2009, pp. 241-248.

C. Browne, “Automatic generation and evaluation of recombination
games,” Thesis, Queensland University of Technology, 2008.

J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelback, G. N.
Yannakakis, and C. Grappiolo, “Controllable procedural map generation
via multiobjective evolution,” Genetic Programming and Evolvable
Machines, vol. 14, no. 2, pp. 245-277, 2013.

V. Valtchanov and J. A. Brown, “Evolving dungeon crawler levels
with relative placement,” in Proceedings of the Fifth International C*
Conference on Computer Science and Software Engineering. ACM,
2012, pp. 27-35.

L. Ferreira, L. Pereira, and C. Toledo, “A multi-population genetic
algorithm for procedural generation of levels for platform games,”
in Proceedings of the Companion Publication of the 2014 Annual
Conference on Genetic and Evolutionary Computation. ACM, 2014,
pp. 45-46.

L. Cardamone, D. Loiacono, and P. L. Lanzi, “Interactive evolution
for the procedural generation of tracks in a high-end racing game,” in
Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation. ACM, 2011, pp. 395-402.

M. Cook and S. Colton, “Multi-faceted evolution of simple arcade
games,” in Computational Intelligence and Games (CIG), 2011 IEEE
Conference on, 2011, Conference Proceedings, pp. 289-296.

N. Shaker, M. Shaker, and J. Togelius, “Evolving playable content for
cut the rope through a simulation-based approach,” in Proceedings of the
Ninth AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2013.

M. Shaker, M. H. Sarhan, O. A. Naameh, N. Shaker, and J. Togelius,
“Automatic generation and analysis of physics-based puzzle games,” in
Computational Intelligence in Games (CIG), 2013 IEEE Conference on,
2013, pp. 1-8.

L. Ferreira and C. Toledo, “A search-based approach for generating
angry birds levels,” in Computational Intelligence and Games (CIG),
2014 IEEE Conference on, 2014, pp. 1-8.

, “Generating levels for physics-based puzzle games with estimation
of distribution algorithms,” in Proceedings of the 11th Conference on
Advances in Computer Entertainment Technology. ~ACM, 2014, pp.
25:1-25:6.

M. Kaidan, C. Y. Chu, T. Harada, and R. Thawonmas, ‘“Procedural
generation of angry birds levels that adapt to the player’s skills using
genetic algorithm,” in 2015 IEEE 4th Global Conference on Consumer
Electronics (GCCE), 2015, pp. 535-536.

A. Kolmogorov, “Three approaches to the quantitative definition of
information,” Problems Inform. Transmission, vol. 1, no. 1, pp. 1-7,
1965.

P. Zhang and J. Renz, “Qualitative spatial representation and reasoning
in angry birds: The extended rectangle algebra,” Fourteenth Interna-
tional Conference on the Principles of Knowledge Representation and
Reasoning, 2014.

A. G. M. Blum and B. Neumann, “A stability test for configurations of
blocks,” Massachusetts Institute of Technology, Tech. Rep., 1970.

Z. Jia, A. Gallagher, A. Saxena, and T. Chen, “3d-based reasoning
with blocks, support, and stability,” in Computer Vision and Pattern
Recognition (CVPR), 2013 IEEE Conference on, 2013, pp. 1-8.

X. Ge, J. Renz, and P. Zhang, “Visual detection of unknown objects in
video games using qualitative stability analysis,” IEEE Transactions on
Computational Intelligence and Al in Games, 2015.

M. Dry, K. Preiss, and J. Wagemans, “Clustering, randomness, and
regularity: Spatial distributions and human performance on the traveling
salesperson problem and minimum spanning tree problem,” The Journal
of Problem Solving, vol. 4, no. 1, 2012.

M. Morisita, “Measuring the dispersion of individuals and analysis of
the distribution pattern,” Thesis, Kyushu University, 1959.

G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proceedings of the 2010 Workshop on Procedural Content
Generation in Games. ACM, 2010, pp. 4:1-4:7.

D. Wheat, M. Masek, C. P. Lam, and P. Hingston, “Modeling perceived
difficulty in game levels,” in Proceedings of the Australasian Computer
Science Week Multiconference. ACM, 2016, pp. 74:1-74:8.

34 Procedural Generation of Complex Stable Structures for Angry Birds Levels

Chapter 3

Procedural Generation of Levels for
Angry Birds Style Physics Games

3.1 Foreword

This paper extends the work presented in the previous paper, allowing for full An-
gry Birds levels to be generated (although some key aspects are still missing). This
generator came second in the 2016 AIBIRDS level generation competition.

3.2 Paper

M. Stephenson, J. Renz, Procedural Generation of Levels for Angry Birds Style
Physics Games, The Twelfth Annual AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment (AIIDE’16), Burlingame, CA, October 2016, pp. 225-231.

35

36 Procedural Generation of Levels for Angry Birds Style Physics Games

Procedural Generation of Levels for Angry Birds Style Physics Games

Matthew Stephenson and Jochen Renz
Research School of Computer Science
Australian National University
Canberra, Australia
matthew.stephenson @anu.edu.au, jochen.renz@anu.edu.au

Abstract

This paper presents a procedural generation algorithm
for levels in physics-based puzzle games similar to
Angry Birds. The proposed algorithm creates levels
consisting of various self-contained structures placed
throughout a 2D area. Each structure can be placed ei-
ther on the ground or atop floating platforms within the
available level space. These structures are created using
a variety of different block types and do not require pre-
defined substructures or composite elements. Target ob-
ject locations are determined based on a combination of
factors, including structural protection, occupancy esti-
mation and overall dispersion. Experiments were per-
formed in order to determine the ideal input parameters
for generating desirable levels. The expressivity of the
generator was also evaluated and the results show that
the proposed method can generate a wide variety of in-
teresting levels.

Introduction

Procedural level generation (PLG) is one of the most popular
forms of procedural content generation (PCG) and has been
implemented in an extensive assortment of digital games
(Hendrikx et al. 2013). PLG is defined as “’the automatic
creation of game levels without manual interaction” and typ-
ically requires multiple different components of a level to be
dependently generated (Kerssemakers et al. 2012). PLG can
be used to generate a large number of levels in a short period
of time. This can greatly reduce a games development cycle
and memory requirements (Dahlskog and Togelius 2012),
as well as providing unique and original gameplay expe-
riences based on the user’s playstyle (Yannakakis and To-
gelius 2011).

Previous research into PLG has explored its applicabil-
ity to many different game genres. These include platform
(Mourato, dos Santos, and Birra 2011), racing (Cardamone,
Loiacono, and Lanzi 2011), role-playing (Valtchanov and
Brown 2012), arcade (Cook and Colton 2011), stealth (Xu,
Tremblay, and Verbrugge 2014), roguelike (Stammer et al.
2015) and real-time strategy (Lara-Cabrera et al. 2015). Sev-
eral papers have also explored the use of PLG for physics-
based puzzle games, most notably for the Cut the Rope

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Shaker, Shaker, and Togelius 2013a; 2013b; Shaker et al.
2015) and Angry Birds games (Ferreira and Toledo 2014a;
2014b; Kaidan et al. 2015; 2016). The physics constraints
employed in these types of games create many problems for
PLG and makes evaluating the quality of levels difficult. The
playability/solvability of generated levels is particularly dif-
ficult to confirm, due to the exceptionally large state and ac-
tion spaces (Shaker et al. 2013).

This paper presents a procedural level generator for
physics-based puzzle games similar to Angry Birds. Al-
though the proposed generator is designed specifically for
the Angry Birds elements and environment, the techniques
used can be applied to many other similar games. Examples
of such games include Crush the Castle, Fragger and Siege
Hero, all of which share the same general level design and
play style as Angry Birds. Several different level aspects are
considered by our generator, including structure generation,
structure placement, target placement, support analysis and
bird selection.

Previous implementations of PLG for Angry Birds have
been very limited in terms of what they have been able
to achieve. These prior methods can only generate sim-
ple levels, containing columns of either single objects or
small predefined structures (Ferreira and Toledo 2014b;
2014a). Several attempts have been made to improve this
approach by adapting levels to the player’s skill (Kaidan et
al. 2015) and increasing the number of composite elements
(Kaidan et al. 2016). However, even with these alterations
the complexity of the generated levels is still relatively low.
In contrast, our proposed PLG can create a broad range of
levels, containing a wide assortment of complex and novel
structures.

Several experiments were conducted to analyze the ex-
pressivity of our level generator and to determine its capabil-
ities. Metrics such as frequency, linearity, density, leniency
and playability, were used to describe the characteristics of
the generated levels. The stability of generated structures for
different widths, heights and compositions was also investi-
gated.

Angry Birds Level Overview

Angry Birds levels consist of several different components.
On the left side of the level there is a slingshot and a number
of birds which can be thrown by it. On the right side there

§3.2 Paper 37

__
=

4

9 hlo
o

8

| [6
O

G == s
3

Figure 1: The twelve different blocks available.

are various blocks, platforms and pigs, usually arranged into
an interesting design. The objective of any given level is to
kill all the pigs using the birds provided. The source code
for the official Angry Birds game is not currently available,
so a Unity-based clone created by Lucas Ferreira was used
(Ferreira and Toledo 2014b).

Before describing our algorithm’s methodology we will
define some terms which will be used throughout this paper.
A block is any object within the level which can be moved
apart from a bird or pig. There are currently twelve different
blocks available within the unity clone, see Figure 1. Blocks
one to eight are referred to as “regular” blocks, whilst blocks
nine to twelve are called irregular”. A platform is any sur-
face, apart from the ground of the level, which has a fixed
position. We also define the concept of level space” which
is a pre-defined area of the level, within which blocks, plat-
forms and pigs can be placed. This level space is used to
prevent objects being placed too close to the slingshot, be-
low the ground, or outside of the camera’s view. The posi-
tions of the slingshot and ground are fixed within a level and
all other objects are placed relative to these two locations.

Proposed Level Generator

The proposed level generator creates Angry Birds levels
consisting of a collection of independent structures. These
structures are distributed throughout the available level
space, either on the ground or atop floating platforms. The
number of ground and platform structures can be decided ei-
ther manually or by random selection. Before discussing the
placement of these structures within a level it is necessary to
first explain how these structures are created.

Structure Generation

Within our level generator there is a self-contained structure
generator which creates complex structures using the eight
regular blocks available. Five of the regular blocks (2, 5,
6, 7 and 8) can also be rotated 90 degrees to give a different
block shape. This creates a total of 13 different regular block
types. Structures generated using our algorithm are made up
of rows, with each row consisting of a single block type.
Each block is also randomly assigned one of three possible
materials (wood, ice and stone).

Each structure is generated to fit within a certain area of
the overall level. This area is used to define the maximum
width and height values that the generated structure can pos-

Figure 2: The bottom row of this structure has three possible
subset combinations: each block is in a separate set (red),
all blocks are in a single set (blue), and the three left/right
blocks are partitioned into two sets (green).

(a) (b) (©)

Figure 3: The three supporting block placements for a single
block subset: middle (a), edges (b), mid-points (c).

sess. A probability table is also used to determine the like-
lihood of a particular block type being selected. Each block
type is given a probability of selection, with all probabilities
summing to one.

First, an initial block type is selected at random using the
probability table. This block type will become the peak(s) of
the structure, beneath which all other blocks will be placed.
Any number of peaks can be chosen, either manually or ran-
domly, as can the distance between each of them. However,
if the area taken up by all of the peak blocks fails to sat-
isfy the structure’s maximum width or height limits, then
the peak combination will be declared invalid and a new ar-
rangement will be chosen. This process continues until a
suitable selection is made.

After this first row has been initialized, additional rows
of blocks are recursively created which will be placed un-
derneath the already generated structure. The blocks at the
base of the structure are split into subsets based on the dis-
tances between them. All possible subset combinations are
recorded, see Figure 2. A block type for the new row is then
selected using the probability table. For each subset com-
bination there are three possibilities for placing supporting
blocks:

e Blocks are placed underneath the middle of each subset.
e Blocks are placed underneath the edges of each subset.

e Blocks are placed underneath the mid-points between the
middle and edges of each subset.

All three of these possibilities are shown in Figure 3.
These three choices can also be combined to make a total
of seven different options. Each of these options is created
for all subset combinations using the selected block type,
after which they are tested for validity.

38 Procedural Generation of Levels for Angry Birds Style Physics Games

Figure 4: An example of a fully generated structure.

Any case where blocks overlap is deemed invalid and re-
moved as a possible selection. It is also important that the
blocks at the bottom of the already generated structure are
supported by this new row. The level of required support
can be set to one of three settings. The first is that each
block must be supported either at its middle position or both
of its edge positions. The second is that each block must be
supported at both of its edge positions. The third is that each
block must be supported at its middle position and both of
its edge positions. Any case that does not fulfil the chosen
support requirement is deemed invalid.

After validity checks have been performed for all subset
combinations and supporting block placements, a valid op-
tion is selected at random from all possibilities. If no valid
options are available then a new block type is chosen and
the process repeated. The selected option is then used as the
structure’s new bottom row. This process continues until the
width or height of the structure is greater than its maximum
width or height values respectively. Once this occurs the last
row that was added is removed, after which the structure is
complete. This process ensures that the generated structure
will fit within the dimensions specified. An example of a
fully generated structure is shown in Figure 4.

Structure Placement

Structures within an Angry Birds level can be placed either
on the ground or on a platform. The desired number of struc-
tures for each of these options can be defined by the user
but size restrictions mean that this may not always be possi-
ble. Ground structures are placed first followed by platform
structures.

The available ground space within a level is divided into
randomly sized sections, with the number of sections equal
to the desired number of ground structures. Whilst these
sections can theoretically be any size it is useful to employ a
minimum size limit. This prevents sections from being too
small which restricts the complexity of the generated struc-
tures. A structure is then generated for each ground section.
The maximum width of each structure is equal to the width
of its section and the maximum height of the structure is set
to two thirds the total height of the level space.

After all ground structures have been generated the plat-
forms are placed within the level. Platforms are made up
of square blocks which are not subject to the same physics

as other objects and are instead fixed in place. The size of a
platform is determined by the number of blocks that are used
to create it. All platforms have a height of exactly one block
but the width of a platform can vary. Like the ground sec-
tions, it is useful to set minimum and maximum size limits
on the platforms created. Each platform’s location is de-
termined randomly within the level space. The location is
deemed valid if the following holds true: the platform does
not overlap any other platform or ground structure, the plat-
form is not too close to the top of the level space, if the
platform is placed above or below another platform then it
should not be too close to that platform. These last two
requirements ensure that all platforms have enough space
above them to generate a complex and interesting structure.
Additional checks are also performed to ensure that plat-
forms do not block off any sections of the level. Depending
on the desired number of platform structures and the size of
the ground structures, it may not be possible to fit all the nec-
essary platforms within the available level space. Each plat-
form is therefore given a maximum number of placement at-
tempts. If a suitable location for a platform cannot be found
after this many attempts then it is disregarded. This means
that the actual number of platforms within a level may be
lower than what was originally requested.

A structure is then generated for each successfully placed
platform. The maximum width of each structure is equal
to the width of its platform and the maximum height of the
structure is the vertical distance between the platform and ei-
ther the top of the level space or any platform located above
it (whichever is smaller).

Pig Placement

Once all structures have been placed within the level they
can be populated with pigs. Each structure is analyzed for
possible pig locations using the following method. First, the
spaces directly above the middle and edges of each block
within the structure are analyzed to see if there is space for a
pig to fit such that it doesn’t overlap any blocks or platforms.
Any positions that are deemed large enough to support a pig
are recorded as valid pig locations.

Next, the positions that are either on the ground or on plat-
forms, which are also within a structure (to a set precision),
are tested. A position is defined as within a structure if there
are blocks to its left and right that both belong to the same
structure. Again, a check for any overlap with nearby blocks
is carried out and valid locations recorded.

Once all valid pig locations have been identified they are
ranked based on a combination of factors. The first factor
(f1) is the structural protection that the pig is offered with re-
spect to the blocks surrounding it. Pigs that are placed within
a structure have greater protection from incoming shots than
those outside it. The degree of protection that a pig location
has is calculated as the minimum number of blocks to its
left (b;), right (b,.) or above (b,), that are all associated with
the same structure as the pig location. This value is then
multiplied by a set weighting (X).

f1 = X (min(by, b, b,)) (1)

§3.2 Paper 39

The second factor (f2) is the overall dispersion of pigs
throughout the level. Levels with pigs spread throughout
them are typically preferable to levels with pigs grouped to-
gether. The dispersion value for a pig location (p;) is cal-
culated as the product of the Euclidean distances between
itself and all the pig locations which have already been se-
lected (ps). This value is then multiplied by a set weighting
Y).

=Y 1] pw=)

Pz €Ps

The final factor (f3) is occupancy estimation and is
based on a technique called occupancy-regulated extension
(Mawhorter and Mateas 2010). If a pig location is lower
than a platform and within a set distance (D) of that plat-
form’s edges then f3 is equal to a set weighting (Z) (other-
wise f3 = 0). This is because one of the key features within
Angry Birds is the ability to kill pigs with falling blocks,
rather than with birds alone. Pigs that are placed below or
near other blocks which may potentially fall and kill them
provide the user with this alternative choice of action. Pigs
that are situated below the edges of platforms are particu-
larly vulnerable to this kind of attack.

The sum of all three of these factors gives a fitness value
for each pig location. All pig locations are ranked using their
fitness values, with a higher fitness value indicating a more
desirable location.

After all valid pig locations have been ranked the pigs are
placed within the level. The desired number of pigs within
the level can be decided either manually or by random selec-
tion. The location with the highest ranking is chosen and a
pig is placed at the specified position. Any previously valid
pig locations that would overlap the newly placed pig are
removed. The remaining pig locations are then re-evaluated
and the highest ranked position is again selected. This pro-
cess continues until the desired number of pigs is reached or
there are no more valid pig locations.

If the desired number of pigs has still not been reached,
even after exhausting all valid pig locations, then additional
pigs are added as follows. A ground position is chosen at
random and analyzed to see if there is space for a pig to be
placed there. If there is then the pig is placed, otherwise a
new location is randomly selected. This continues until the
desired number of pigs is reached or a maximum number of
attempts is reached.

Irregular Block Placement

After pig locations have been finalised, attempts are made to
place irregular blocks throughout the level. Block 10 can be
rotated 90 degrees to form a new block shape, bringing the
total number of irregular block types to five. These blocks
are placed in a similar fashion to the pigs. Valid locations are
determined for each of the block types, both on top of blocks
and on the ground or platforms within a structure. As block
10 is not vertically symmetrical it must also be supported
such that it will not fall over. It can therefore only be placed
on blocks that are wide enough to support it. After all valid
locations have been identified for all block types, a specific

block type and location is selected at random. Much like
the regular blocks, the chance of selecting each block type
is specified in a probability table. Any remaining locations
that would overlap this selected block are removed as valid
possibilities. This continues until no more valid options re-
main.

Structural Weak Points

The concept of a weak point for a structure is any block
that, if removed, would cause a large number of other ob-
jects (blocks or pigs) to be affected (Zhang and Renz 2014).
Levels that are intended to be difficult to solve can attempt
to shield these particular blocks from the user’s shots. This
protection can also reduce the effectiveness of greedy shots
and requires the user to plan their actions carefully.

To identify weak points, every block within the generated
level is first tested to see if it is ’reachable”, i.e. it can be hit
directly with a bird fired from the slingshot. Every reachable
block is then given a score based on the number of objects
that will be affected by its removal. If the removal of a block
violates another object’s local support requirements then we
say that this object has been affected. An object is also af-
fected if its local support requirements would be violated by
the removal of any other affected objects. Affected blocks
add one to the score, whilst affected pigs add ten. If the score
for any reachable block is greater than a set threshold (W),
then the block is classified as a weak point.

The proposed level generator can attempt to protect a
weak point using a variety of methods. Firstly, if the weak
point is part of a ground structure and there is sufficient
space to the left of the structure, then a stack of randomly
chosen blocks (selected using the probability table) is placed
to the left of the structure. This stack is recursively built
one block at a time until either the weak point is no longer
reachable, or any of the blocks in the stack overlap other ob-
jects, at which point the last added block is removed. Sec-
ondly, if the weak point is part of a supporting block arrange-
ment where positions for other support blocks are available,
then additional support blocks are added if there is sufficient
space. Lastly, the material of the weak point can be set to
stone, as this increases the block’s overall durability.

Bird Number Selection

The number of birds that are provided is very important to
a level’s integrity, as this determines how difficult the level
will be to complete. If the number of birds is too low then
the level will be extremely challenging, perhaps even impos-
sible. Conversely, if the number of birds to too high then the
level will be too easy.

Selecting the number of birds (b) is based on a formula
which takes into account the number of pigs (p) and struc-
tures (s) that are present within the level:

b 2] if s < |5]
[Z]+1 otherwise

A3)

In words, this means that the number of birds is equal
to half the number of pigs (rounding up) plus an additional
bird if the number of structures is greater than or equal to

40 Procedural Generation of Levels for Angry Birds Style Physics Games

1asasasd o
) | ==
P J s /N~ o\ a2\ - ®
- }/) @ =g g0 Al
. K
: | |
\ N% P~ .\' =N 7

Figure 5: An example of a fully generated level.

this value. An additional bird can then be added again if
the level is intended to be easy, or removed if the level is
intended to be difficult.

After selecting the number of birds the level is complete.
An example of a fully generated level is shown in Figure 5.

Experiments and Results

Two studies were conducted to analyze the stability of the
generated structures and evaluate the overall expressivity of
our level generator.

Stability

The stability of the structures created by our generator is a
critical factor that influences the quality of the levels pro-
duced. Structures that cannot support themselves will fall
down once the level is initialized and severely reduce its
overall appeal. There are currently three different support
options that can be used to alter the stability requirements
for the structures created. The option chosen determines
the level of support that is needed by each block within the
structure. Several tests were carried out to determine if the
support requirement, as well as the width and height, of a
structure was a good indication of its stability.

The first test was carried out using the requirement that
each block must be supported either in its middle position
or both of its edge positions. 100 structures were generated,
with the width and height limits for each structure selected
randomly. All blocks had an equal chance of being selected
and blocks with two possible block types (different rota-
tions) had their selection probability split evenly between
them. The results of this experiment are illustrated in Figure
6. The average width and height of each stable structure was
4.65 and 4.39 respectively. The average width and height of
each unstable structure was 3.73 and 5.37 respectively. This
result demonstrates that structures which are short and wide
are more likely to be stable than structures which are tall and
thin. Of the 100 generated structures 74 of them were stable
and 26 were not.

Whilst it is possible to increase the likelihood of a gener-
ated structure being stable by implementing a separate sta-
bility analysis method, the engine within which the level is
eventually placed will likely suffer from simulation inaccu-
racies. It is therefore not possible to guarantee the stability
of a generated structure using this support requirement.

The remaining two support requirements generated no un-
stable structures, but had different effects on the qualities of

8
0’ L PN ‘e *
7 X "' $.
6 DR s o
o ¥ e . . .
5 ag X '0.0 L d
k] L AP 4 L Y : 0’
2 4 2 0 *
£ Y% *e o . + Stable
*
§3 ** .0 of L] + Not Stable
° . I
2 2 e ¢ h 3
w *
1
0 T T T T T !
0 2 4 6 8 10 12
Structure Width

Figure 6: Width and Height values for 100 generated struc-
tures.

the structures generated. The second of the three options has
the requirment that each block must be supported at both of
its edge positions. This requirement guarantees that the gen-
erated structure will be stable but results in a lower number
of structure possibilities than the first option. The third op-
tion has the requirment that each block must be supported at
its middle position and both of its edge positions. This addi-
tional restriction increases the overall robustness of the gen-
erated structures but further decreases the number of struc-
ture possibilities.

Out of all three of these support options we would there-
fore recommend the second. The first option provides the
most variety in structure generation but cannot guarantee
the stability of the structures created. The third option (like
the second) guarantees the stability of the generated struc-
tures, but restricts the algorithms expressivity and reduces
the amount of free space within each structure. As a result
of this analysis, the second support option was used when
evaluating the level generator’s expressivity.

Expressivity Analysis

The expressivity of a level generator is the space of all lev-
els it can generate and is measured by evaluating different
aspects of a level to identify its strengths and weaknesses.
Several metrics have been proposed to analyze a generator’s
expressivity (Smith and Whitehead 2010; Smith et al. 2011;
Horn et al. 2014; Snodgrass and Ontanon 2015): frequency,
linearity, density, leniency and playability. For our experi-
ments we generated 200 levels, each containing three ground
structures, two platform structures and eight pigs. For pig
placement we defined X=3.0, Y=0.002, Z=1.0 and D=0.8.
For identifying structural weak points we defined W=30.
All blocks had an equal chance of being selected and blocks
with two possible block types (different rotations) had their
selection probability split evenly between them.

Frequency Frequency evaluates the number of times that
a block type occurs within a level. Figure 7 shows the av-
erage frequency of each block type within a level (block
types with an r-subscript indicate blocks that have been ro-
tated ninety degrees). Even though each block had an equal

§3.2 Paper 41

Frequency
PN

o N B () 0o o ~N

|
S
« I
& I
O I —

|

1 Ll
8

6 6r 7 Tr 8r 9 10 10r 11 12
Block Type

Figure 7: Average frequency for each block type.

chance of being selected we can see that wide blocks ap-
peared less frequently than thin blocks. The same can also
be said about most of the regular block types and their ro-
tated counterparts. This is likely due to the fact that wider
block types are more likely to fulfil the necessary support
requirements with a fewer number of blocks. Thinner block
types require more blocks to fulfil these conditions and so
are placed more frequently. It is also apparent that short
block types are chosen more frequently than tall ones. This
is likely due to the size restrictions imposed on the struc-
tures created. Once a structure exceeds its maximum width
or height, the last row that was added is removed. Selecting
tall or wide blocks are more likely to push the structure’s
dimensions past these limits and so are less likely to be in-
cluded in the final structure. Both of these issues could be
easily rectified by increasing the probability of larger block
types being selected.

Linearity Linearity measures the “profile” of generated
levels. Levels with objects placed at multiple heights
throughout the level space will have a low linearity, while
levels where the objects follow a straight line will have a
high linearity. Linearity is measured by performing a linear
regression, taking the center points of all blocks, platforms
and pigs as our data points. Each level is then scored based
on its R? value. The average linearity of a generated level
is 0.0462, with a standard deviation of 0.0439. This result
shows that our levels are highly non-linear, with objects be-
ing distributed throughout the entire level space.

Density The density of a level represents the compactness
of the objects placed within it. Density is measured by calcu-
lating the total area of all blocks, platforms and pigs within
the level space. This is then divided by the total size of the
level space to give a percentage indicating how much of the
level’s area was taken up by objects. The average density
of a generated level is 24.3%, with a standard deviation of
4.26%. We believe this density percentage is suitable, as
levels with a low density are likely to be sparse and uninter-
esting, whilst levels with a high density are likely to be too
congested.

Leniency Leniency is used to express how difficult a level
is to successfully complete, i.e. kill all pigs with the birds

provided. The difficulty of a level is estimated using the
number of pigs and structures that are present. This is then
used to determine the number of birds that are provided to
the player. Therefore, the leniency of a level is entirely de-
pendent on the genertor’s input parameters.

Playability Playability is used to represent whether a level
is solvable. Due to the exceptionally large state and action
space, it is difficult to determine if a level can be completed.
Several Al agents that are designed for playing Angry Birds
were employed, but the results proved unreliable. An Al
agent can be used to confirm that a level is solvable but not
that it is unsolvable. Although every generated level should
be solvable using an infinite number of birds, whether or
not a level can be solved using the birds provided remains
unknown.

Conclusions and Future Work

This paper has presented a procedural generation algorithm
for creating complex and interesting levels in physics-based
puzzle games similar to Angry Birds. The algorithm con-
structs these levels by generating a collection of indepen-
dent structures and arranging them throughout the available
level space. These structures are created using a variety of
different block types and can be demonstrated to be struc-
turally stable. Additional factors such as a varying number
of peaks, multiple locations for support block placement and
several possible materials, ensure that the range of possible
structures is extensive and diverse. The levels are then pop-
ulated with target objects (pigs) and other additional block
types. Structural weak points are identified and can be pro-
tected using a variety of methods. The number of attempts
to solve the level (number of birds) is then chosen based on
a combination of factors.

The proposed level generator is also highly customis-
able. Many different aspects can be defined by the user,
such as the number of ground and platform structures, num-
ber of pigs, block selection probabilities, structural support
requirements, pig placement parameters and many others.
This allows the level generator to be tailored to any purpose
and it can be used to create levels for a variety of situations.
The generator is also flexible enough that it can be applied
to many other games apart from Angry Birds.

Our proposed level generator was evaluated in terms of
its expressivity using a wide variety of metrics: frequency,
linearity, density, leniency and playability. These metrics
were calculated using not only the type of objects within
each level, but also their position and quantity. The results
of this analysis demonstrated that our structure generator can
create a broad range of levels with many desirable attributes.

There is an extensive variety of future possibilities for this
research. One example could be to develop more sophisti-
cated methods for structure generation, creating structures
that can contain multiple block types and angles within each
row. Additional studies could also be carried out into intel-
ligent material selection or playability analysis. Work could
also be performed on creating an algorithm that can gener-
ate levels using a limited supply of objects or other similar
restrictions.

42 Procedural Generation of Levels for Angry Birds Style Physics Games

References

Cardamone, L.; Loiacono, D.; and Lanzi, P. L. 2011. In-
teractive evolution for the procedural generation of tracks
in a high-end racing game. In Proceedings of the 13th An-
nual Conference on Genetic and Evolutionary Computation,
395-402. ACM.

Cook, M., and Colton, S. 2011. Multi-faceted evolution
of simple arcade games. In Computational Intelligence and
Games (CIG), 2011 IEEE Conference on, 289-296.

Dahlskog, S., and Togelius, J. 2012. Patterns and procedu-
ral content generation: Revisiting mario in world 1 level 1.
In Proceedings of the First Workshop on Design Patterns in
Games, 1:1-1:8. ACM.

Ferreira, L., and Toledo, C. 2014a. Generating levels for
physics-based puzzle games with estimation of distribution
algorithms. In Proceedings of the 11th Conference on Ad-
vances in Computer Entertainment Technology, 25:1-25:6.
ACM.

Ferreira, L., and Toledo, C. 2014b. A search-based approach
for generating angry birds levels. In Computational Intelli-
gence and Games (CIG), 2014 IEEE Conference on, 1-8.

Hendrikx, M.; Meijer, S.; Velden, J. V. D.; and Iosup, A.
2013. Procedural content generation for games: A survey.
ACM Trans. Multimedia Comput. Commun. Appl. 9(1):1-
22.

Horn, B.; Dahlskog, S.; Shaker, N.; Smith, G.; and Togelius,
J. 2014. A comparative evaluation of procedural level gen-
erators in the mario ai framework. In Foundations of Digital
Games 2014, 1-8.

Kaidan, M.; Chu, C. Y.; Harada, T.; and Thawonmas, R.
2015. Procedural generation of angry birds levels that adapt
to the player’s skills using genetic algorithm. In 2015 IEEE
4th Global Conference on Consumer Electronics (GCCE),
535-536.

Kaidan, M.; Harada, T.; Chu, C. Y.; and Thawonmas, R.
2016. Procedural generation of angry birds levels with
adjustable difficulty. In Proceedings of the IEEE World
Congress on Computational Intelligence.

Kerssemakers, M.; Tuxen, J.; Togelius, J.; and Yannakakis,
G. N. 2012. A procedural procedural level generator gen-
erator. In 2012 IEEE Conference on Computational Intelli-
gence and Games (CIG), 335-341.

Lara-Cabrera, R.; Nogueira-Collazo, M.; Cotta, C.; and
Fernndez-Leiva, A. J. 2015. Procedural content genera-
tion for real-time strategy games. International Journal of
Interactive Multimedia and Artificial Intelligence 40—48.

Mawhorter, P., and Mateas, M. 2010. Procedural level gen-
eration using occupancy-regulated extension. In Proceed-
ings of the IEEE Conference on Computational Intelligence
in Games (CIG), 351-358.

Mourato, F.; dos Santos, M. P.; and Birra, F. 2011. Au-
tomatic level generation for platform videogames using ge-
netic algorithms. In Proceedings of the Sth International
Conference on Advances in Computer Entertainment Tech-

nology, 8:1-8:8. ACM.

Shaker, M.; Sarhan, M. H.; Naameh, O. A.; Shaker, N.; and
Togelius, J. 2013. Automatic generation and analysis of
physics-based puzzle games. In Computational Intelligence
in Games (CIG), 2013 IEEE Conference on, 1-8.

Shaker, M.; Shaker, N.; Togelius, J.; and Abou-Zleikha, M.
2015. A progressive approach to content generation. In /8th
European Conference on the Applications of Evolutionary
Computation, EvoApplications 2015, 381-393.

Shaker, N.; Shaker, M.; and Togelius, J. 2013a. Evolving
playable content for cut the rope through a simulation-based
approach. In Proceedings of the Ninth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment,
72-78.

Shaker, N.; Shaker, M.; and Togelius, J. 2013b. Ropossum:
An authoring tool for designing, optimizing and solving cut
the rope levels. In AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, 215-216.

Smith, G., and Whitehead, J. 2010. Analyzing the expres-
sive range of a level generator. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games,
4:1-4:7. ACM.

Smith, G.; Whitehead, J.; Mateas, M.; Treanor, M.; March,
J.; and Cha, M. 2011. Launchpad: A rhythm-based level
generator for 2-d platformers. IEEE Transactions on Com-
putational Intelligence and Al in Games 3(1):1-16.

Snodgrass, S., and Ontanon, S. 2015. A hierarchical mdmc
approach to 2d video game map generation. In AAAI Con-
ference on Artificial Intelligence and Interactive Digital En-
tertainment, 205-211.

Stammer, D.; Mannheim, H.; Gnther, T.; and Preuss, M.
2015. Player-adaptive spelunky level generation. In 2015
IEEE Conference on Computational Intelligence and Games
(CIG), 130-137.

Valtchanov, V., and Brown, J. A. 2012. Evolving dungeon
crawler levels with relative placement. In Proceedings of the
Fifth International C* Conference on Computer Science and
Software Engineering, 27-35. ACM.

Xu, Q.; Tremblay, J.; and Verbrugge, C. 2014. Generative
methods for guard and camera placement in stealth games.
In AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment, 87-93.

Yannakakis, G. N., and Togelius, J. 2011. Experience-driven
procedural content generation. IEEE Transactions on Affec-
tive Computing 2(3):147-161.

Zhang, P., and Renz, J. 2014. Qualitative spatial represen-
tation and reasoning in angry birds: The extended rectangle
algebra. In Knowledge Representation and Reasoning Con-
ference.

Chapter 4

Generating Varied, Stable and
Solvable Levels for Angry Birds
Style Physics Games

4.1 Foreword

This paper presents a more advanced version of the level generator presented in the
previous paper, with several additional improvements. This is the final iteration of
our autonomous search-based level generation algorithm for Angry Birds. This gen-
erator won both the 2017 and 2018 AIBIRDS level generation competitions, with the
source code freely available online [Stephenson, 2018]. This generator can not only
be used to increase the number of levels for human players, extending the game’s
replayability, but such levels can also play a vital role in evaluating and training new
agents.

4.2 Paper

M. Stephenson, J. Renz, Generating Varied, Stable and Solvable Levels for Angry
Birds Style Physics Games, [EEE Computational Intelligence and Games Conference 2017
(IEEE-CIG’17), New York, NY, August 2017, pp. 288-295.

43

44 Generating Varied, Stable and Solvable Levels for Angry Birds Style Physics Games

Generating Varied, Stable and Solvable Levels for
Angry Birds Style Physics Games

Matthew Stephenson
Research School of Computer Science
Australian National University
Canberra, Australia
matthew.stephenson @anu.edu.au

Abstract—This paper presents a procedural level generation
algorithm for physics-based puzzle games similar to Angry Birds.
The proposed algorithm is capable of creating varied, stable and
solvable levels consisting of multiple self-contained structures
placed throughout a 2D area. The work presented in this paper
builds and improves upon a previous level generation algorithm,
enhancing it in several ways. The structures created are evaluated
based on a updated fitness function which considers several key
structural aspects, including both robustness and variety. The
results of this analysis in turn affects the generation of future
structures. Additional improvements such as determining bird
types, increased structure diversity, terrain variation, difficulty
estimation using agent performance, stability and solvability ver-
ification, and intelligent material selection, advance the previous
level generator significantly. Experiments were conducted on the
levels generated by our updated algorithm in order to evaluate
both its optimisation potential and expressivity. The results show
that the proposed method can generate a wide range of 2D levels
that are both stable and solvable.

I. INTRODUCTION

Procedural level generation (PLG) is the automatic creation
of game levels without manual interaction and has become a
key area of investigation for video game research [1], [2]. PLG
can be used to generate a large number of levels in a short
period of time. This can greatly reduce a game’s development
cycle and memory requirements [3], as well as dramatically
increasing the amount of available content. The levels created
can also be tailored to the user’s playstyle, providing a unique
and original gameplay experience [4].

Physics-based puzzle games such as Angry Birds, Bad
Piggies, Crayon Physics and World of Goo have increased
in popularity in recent years and provide many interesting
challenges for PLG. Several papers have previously explored
the use of PLG for physics-based puzzle games, most notably
for the Cut the Rope [5], [6], [7] and Angry Birds games [8],
[9], [10], [11]. The physics constraints employed in these types
of games create many problems for PLG and make evaluating
the quality of levels difficult. The playability/solvability of
generated levels is particularly difficult to confirm, due to the
exceptionally large state and action spaces [12]. Although the
proposed generator is designed specifically for the Angry Birds
elements and environment, the techniques used can be applied
to many other games which share similar mechanics and level
designs.

Jochen Renz
Research School of Computer Science
Australian National University
Canberra, Australia
jochen.renz@anu.edu.au

This paper presents an enhanced search-based procedural
level generator for Angry Birds and other similar physics-
based puzzle games. This algorithm is an updated version of
that proposed in [13], [14] with several important improve-
ments being made. One of the major changes we propose is
to the fitness function, which was originally designed to create
structures with specific properties such as height, width and
number of blocks. Our revised approach evaluates structures
on a much higher level, with new parameters for structure
robustness, variety of block types, and pig dispersion, being
used instead. Another significant change is that Angry Birds
agents are now used to determine the number of birds provided
for a generated level, as well as for estimating its difficulty
and verifying that it is solvable. Additional improvements to
the level generation process, including more varied structure
designs, determining suitable placement positions for TNT,
intelligent bird type and material selection, and variable ter-
rain shapes, were also implemented. These combined updates
significantly advance the capabilities of this level generator
beyond that of the original.

Several experiments were conducted to analyse the expres-
sivity of our level generator and to determine its capabilities.
Metrics such as frequency, linearity, density and leniency were
used to describe the characteristics of the generated levels. The
optimisation potential of our algorithm was also investigated,
as was the performance of different Angry Birds agents in
solving the generated levels.

II. ANGRY BIRDS OVERVIEW

Angry Birds is a physics-based puzzle game where the
player uses a slingshot to shoot birds at structures composed of
blocks, with pigs placed within or around them. The player’s
objective is to kill all the pigs using the birds provided. A
typical Angry Birds level, as shown in Figure 1, contains a
slingshot, birds, pigs and a collection of blocks arranged in one
or more structures. Each bird is assigned one of five different
types (red, blue, yellow, black or white) and each block is
assigned one of three materials (wood, ice or stone). TNT can
also be placed within a level and will explode when hit by
another object. The source code for the official Angry Birds
game is not currently available, so a Unity-based clone created
by Lucas Ferreira was used instead [8].

§4.2 Paper 45

Fig. 1: Screenshot of a level from the Angry Birds game.

Before describing our algorithm’s methodology, we will
define some terms which will be used throughout this paper.
A block is any object within the level that can be moved, apart
from a bird, pig or TNT. Twelve different blocks are available
within the unity clone, see Figure 2. Blocks one to eight are
referred to as “regular” blocks, whilst blocks nine to twelve
are called “irregular”. A platform is any surface, apart from
the ground of the level, which has a fixed position.

III. ORIGINAL LEVEL GENERATOR

The proposed level generator described in this paper, builds
upon a previous Angry Birds level generator, originally de-
scribed in [13], [14]. It creates Angry Birds levels consisting
of a collection of independent structures, constructed using the
eight regular blocks available. Five of the regular blocks (2, 5,
6, 7 and 8) can also be rotated 90 degrees to give a different
block shape. This creates a total of 13 different regular block
types. A probability table is used to determine the likelihood
of a particular block type being selected. Each block type is
given a probability of selection, with all probabilities summing
to one. Structures generated using this algorithm are made
up of rows, with each row consisting of a single block type.
These structures can have multiple peaks and feature a variety
of placement methods for each row of blocks. Local stability
requirements are enforced and more rows can be added until
the structure reaches the desired size. Each block is also
randomly assigned one of the three possible materials.

These structures are then distributed throughout the level,
either on the ground (ground structures) or atop floating
platforms (platform structures). The number of ground and
platform structures, as well as their respective width and
height limits, can be determined either manually or by random
selection.

Once these structures have been placed, the level is then
populated with pigs and irregular blocks, distributed on and
within the created structures. Possible positions for pigs are
identified and ranked based on a combination of structural
protection (how much the surrounding blocks shield the pig
from incoming shots), location dispersion (how far away this
position is from other pig locations) and occupancy estimation
(how likely it is for other objects to fall onto the pig). Pigs
are then placed using this ranking until a desired number of
pigs is reached. Any remaining locations are then substituted
with randomly selected irregular blocks.

(6

n}

-
gs H4

Fig. 2: The twelve different block types available.

A K
— @

8

i~]

Lastly, the generator attempts to identify and protect critical
weak points throughout the level. A weak point is defined as
a block within a structure that can be hit directly by a player’s
shot (reachable) and that if removed would affect a large
number of other blocks and/or pigs. If a block is identified
as a weak point within a structure then it is protected using
one of three methods. The first method is to place a column of
blocks to the left of the structure, such that the weak point is
no longer reachable. The second method is to add more blocks
to the structure row that contains the weak point, reducing the
number of objects that would be affected by its removal. The
third method is to simply set the material of the weak point
to stone.

The number of birds that the player is given to solve the
level is calculated using a simple formula that takes into
account the number of structures and pigs within the level.
The types of these birds are not considered by the original
level generator.

For a more in depth explanation of the baseline structure and
level generation processes, as well as examples of generated
levels, please refer to the original papers.

IV. IMPROVED LEVEL GENERATOR

This section of the paper describes the enhancements that
have been made to the original level generator, to provide
a more varied and robust method for creating levels. This
includes processes for creating structures with multiple block
types within a single row, terrain variation, TNT placement,
global stability analysis, intelligent material and bird type
selection, and using Al agents to determine the number of
birds. Examples of fully generated levels can be found at the
end of this section, demonstrating the enhancements described
here.

A. Block Swapping

One of the main limitations of the original level generator
was that each row of a structure always contained only one
block type, significantly reducing the variety of structures that
could be created. We therefore propose a simple modification
that allows multiple block types within a single row. After a
structure has been generated we attempt to replace some of
the blocks in the structure with other block types that have
the same height, a process referred to as “block swapping”.
For each block within a generated structure, we record a list
of any other block types that have the same height as it and
would still satisfy all local stability requirements if used as

46 Generating Varied, Stable and Solvable Levels for Angry Birds Style Physics Games

a replacement. Each block then has a random chance (S) of
swapping its block type with one from its list. The choice of
which block type to swap to is determined using the original
probability table from the structure’s construction. Examples
of structures with swapped blocks can be seen in Figures 3.a
(central ground structure), 3.c (central ground structure) and
3.d (leftmost ground structure).

B. Terrain Variation

Another minor update to increase level variety is through
the use of varying terrain height and angles. Whilst platform
structures can be suspended in the air at varying locations,
ground structures were previously always placed at the same
height. Instead, we now allow ground structures to have terrain
placed below them, resulting in an increased range of vertical
positions. For each ground structure within a generated level
(starting with the leftmost structure and moving right) there is
a random chance (G) that the current height of the ground will
increase or decrease by some amount. This amount of variation
can be selected randomly but should have fairly small bounds
to prevent it from increasing or decreasing too much. The
height of the ground can never be lower than the base original
ground height. The jumps in height between different ground
structures are masked by using angled terrain, resulting in a
smoother look. Examples of levels with terrain variation can
be seen in Figures 3.a and 3.b.

C. TNT Placement

Whilst the original generator did not attempt to place TNT
throughout the level, the proposed generator does. TNT is a
small square shaped box that will explode when hit by another
object, damaging and pushing away other nearby objects.
Possible TNT locations are identified throughout the level,
using the same approach as for pig positions, and are then
ranked based on a combination of three factors.

The first factor (f1) is how many pigs and structural weak
points are within the TNT’s blast radius. TNT boxes that are
placed near to vulnerable targets will maximise the impact
of their explosions and typically provide the player with
alternative methods for solving the level. The potential damage
that a TNT box has is calculated simply as the number of pigs
(pq) and weak points (by) within its blast radius. This value
is then multiplied by a set weighting (A).

fi = A(pa + ba) (1)

The second factor (f3) is the overall dispersion of TNT
throughout the level. Levels with TNT spread throughout them
are typically preferable to levels with TNT grouped together,
as setting off one of the TNT boxes will likely cause the
others to explode as well. The dispersion value for a TNT
location (t;) is calculated as the product of the Euclidean
distances between itself and all the TNT locations which have
already been selected (¢5). This value is then multiplied by a
set weighting (B).

fo=B [] tt:)

tx€ts

The final factor (f3) is occupancy estimation and is based
on a technique called occupancy-regulated extension [15]. If a
TNT location is lower than a platform and within a set distance
(D) of that platform’s edges then f3 is equal to a set weighting
(C) (otherwise f3 = 0). This is because one of the key features
within Angry Birds is the ability to cause TNT to explode with
falling blocks, rather than with birds alone. TNT that is placed
below or near other blocks which may potentially fall and hit
it provides the user with this alternative choice of action.

The sum of all three of these factors gives a score for each
TNT location. The location with the highest ranking is chosen
and a TNT box is placed at the specified position. Any previ-
ously valid TNT locations that would overlap the newly placed
TNT are removed. The remaining TNT locations are then re-
evaluated and the highest ranked position is again selected.
This process continues until either a maximum number of TNT
boxes (1},) is reached, there are no more valid TNT locations,
or the score for the highest ranked location falls below some
value (S,,). Examples of levels that contain TNT can be seen
in Figures 3.b, 3.c and 3.d.

D. Global Stability Analysis

Another one of the major weaknesses with the original level
generator was that it did not feature a reliable method for
testing the global stability of the structures created. Although
local stability requirements are enforced when adding blocks,
the global stability of a structure must be determined after
its construction. Whilst it is possible to guarantee that the
structures generated would be stable by implementing stricter
stability requirements when adding rows of blocks, this re-
duces the overall variety of content that can be produced.
Qualitative stability methods, such as those described in [16],
would provide a quick way of estimating stability, but they lack
the robustness required for larger and more complex structures.

Instead, as all the relevant physics parameters (mass, den-
sity, friction and location) of objects are known beforehand, we
can use the quantitative method described in [17] to calculate
the global stability of the structures within our generated
levels. Using this quantitative method is still not 100% accu-
rate, as the Unity Engine upon which the Angry Birds clone
is based suffers from simulation inaccuracies. However, we
found that assuming zero friction for our quantitative stability
calculations produced no false positives (i.e., all structures
classified as stable by our quantitative analysis were also stable
within the Unity Engine). Effectively, after each structure
has been generated it is tested for global stability using this
quantitative method. If the structure is deemed unstable then
it is abandoned and a new structure is generated instead.

E. Material and Bird Type Selection

The original level generator did not address the use of mul-
tiple bird types and selected the material of blocks randomly.
Both of these are limitations that heavily reduce the variety
and enjoyment of the levels created. These two points are also
highly interconnected, as many of the bird types in Angry
Birds react differently to specific block materials.

§4.2 Paper 47

There are three different materials that are available in
Angry Birds; wood, ice and stone. These materials form a
natural hierarchy within themselves, with stone being the
heaviest and strongest material, and ice being the weakest
and lightest material. The material for each block within
a generated level is selected using one of several systems,
described below. The trajectory analysis system is carried
out first, after which each structure in the level is randomly
allocated one of the remaining systems. Blocks that have
already been set as stone due to them being weak points are
exempt from this material selection process.

o Trajectory analysis: Two possible trajectories (low and
high) are identified to each pig and TNT within the level.
Each of these trajectories then has a random chance (p;)
of being selected. For each trajectory selected, set all
blocks that intersect this trajectory to the same material
(specifically either wood or ice) unless already set prior.
Trajectories to pigs have higher preference than those to
TNT and the highest ranked locations are done first. This
results in interesting material paths for specific birds to
follow in order to reach important or useful objects.

o Clustering: Pick a random block and set it to a random
material. Find the next closest block that hasn’t already
had its material selected and set this block to the same
material. Each time a block’s material is set (including
the very first block) there is a random chance (p.) that
the material will change. If this happens then the next
selected block is used from now on when determining
the next closest block. This continues until all blocks in
the structure have had their material set. This results in a
cluster like pattern of materials throughout the structure,
as each block has a high likelihood of being the same
material as the blocks around it.

¢ Row grouping: For each row within the structure, set all
blocks to a random material

« Structure grouping: Set all the blocks within the structure
to a random material. This material selection system only
occurs in structures that have fewer than n blocks.

« Random selection: Set each block within the structure to
a random material (original method).

There are also five different bird types that are available; red,
blue, yellow, black and white. The special abilities of each of
these birds are described below, along with the materials that
they are strongest/weakest against.

« Red bird: No special ability, neither strong nor weak
against any specific material.

o Blue bird: Splits into three birds when tapped, strong
against ice blocks, weak against stone blocks.

e Yellow bird: Shoots forward in a straight line with
increased speed when tapped, strong against wood blocks,
weak against ice blocks.

« Black bird: Explodes either when tapped or after hitting
an object, strong against stone blocks.

o White bird: Drops an egg directly downwards when
tapped, this egg explodes after hitting another object.

For each generated level, we calculate the following scores:

« Red score = # reachable pigs / # pigs

e Blue score = # ice blocks / # blocks

o Yellow score = # wood blocks / # blocks
e Black score = # stone blocks / # blocks
o White score = # protected pigs / # pigs

(A pig is reachable if there is a trajectory to it that does not
pass through any other objects, and a pig is protected if all
trajectories to it pass through platforms/terrain.)

Each of these scores are then normalised so that they all
sum to one, giving the desired ratio of bird types for that level.
Bird types are then selected one at a time, always attempting
to keep the ratio of selected bird types as close as possible to
that of the desired ratio, until the desired number of birds is
reached. If the ratio error is equal for multiple choices, then
the bird type that is least present in the current selection is
chosen. If this is also equal then the bird type is selected at
random from these choices. This process can therefore be used
to determine not only the types of birds that are available to
the player but also their ordering.

F. Bird Number Selection

A critical, possibly even game-breaking, issue with the
original generator was that it had no way of establishing
whether a level it had created was solvable. The number of
birds provided to the player was calculated using a very simple
formula and was based only on the number of structures
and birds within the level. Not only is this estimation of
the number of birds required to solve a level exceptionally
primitive, it cannot guarantee that the level is even solvable, let
alone provide an effective measure of difficulty. Many of the
levels generated were either far too easy or extremely difficult,
perhaps even impossible to solve. To improve upon this, we
propose the use of Al agents to both verify that a level is
solvable and to select the number of birds that would provide
a suitable level of difficulty for the player.

The Angry Birds AI Competition [18] was initiated in
2012, and for the past five years participants from all over
the world have been submitting agents to take part in this
competition. These agents are designed to solve Angry Birds
levels using the fewest number of birds possible. The most
recent competition was in 2016, where eight different agents
competed. Once a level has been fully generated we let each
of these eight agents play the level using a very large number
of birds (e.g. 20). The exact number of birds used doesn’t
matter, just so long as there are enough that the agent could
be reasonably expected to solve the level in this many shots.
The type and order of each of these birds is determined using
the method described in the previous section. The number of
shots taken by each agent is then recorded and the fewest
number of birds that was required by any agent is the number
that is given to the player. If none of the agents can solve the
level using all the birds provided, then that level is abandoned
and a new level is generated instead.

Using these agents to evaluate our generated levels allows
us to gain a more accurate estimation of a suitable number of
birds for solving it, as well as confirming that the levels are
indeed feasible with the birds provided. This, combined with

48

Generating Varied, Stable and Solvable Levels for Angry Birds Style Physics Games

(©)

Fig. 3: Four example generated levels using our new improved algorithm.

the other advancements described, mean that not only can our
new level generator create a more varied and enjoyable set of
levels, but that these levels are also be guaranteed to be both
stable and solvable.

V. FITNESS FUNCTION

One of the original papers [13] also proposed a fitness
function that could be used to tailor the content generated over
time. This was achieved by updating the values in a probability
table used for selecting block types during the structure
construction process. Whilst this method is an effective way
of generating highly specific content, the fitness function used
was fairly basic. This original function took into account
the number of possible pig locations within the structure,
the number of blocks within the structure, the aspect ratio
of the structure, and the dispersion of possible pig locations
within the structure. The problem with this is that while these
factors allow for the user to heavily tailor the type of structure
generated, all these values are either highly subjective or
dependent on the size boundaries for the structure. Structures
that are larger will typically have more blocks and more viable
locations for pigs, as well as a lower average distribution.
While the concept of ranking structures based on aspect ratio
may allow for more user liberties, it does not typically result
in more interesting structures.

We therefore propose a new fitness function that evaluates
each structure on more objective factors, increasing the overall
quality of the levels created without severely reducing the
variety of generated content. This new fitness function takes
into account three distinct factors, pig placement potential,
block type variety and structure robustness, with a lower fitness
value indicating a more desirable level.

(@

A. Pig Placement Potential

This component of the fitness function is a merger of two
of the previous fitness function factors, specifically the factors
regarding the number and dispersion of possible pig locations.
Instead of simply rewarding structures that have a lot of
possible places to put pigs, we will now reward structures that
have a large number of well dispersed possible pig locations.
|p| is defined as the total number of possible pig locations
in the structure and d defines the dispersion value calculated
using the same dispersion measurement technique proposed in
[13]. To give a quick summary, this dispersion method divides
the width and height of the structure by the square root of the
number of possible pig locations, and then places a rectangle
with this new width and height at every possible pig location.
The total area that these rectangles cover gives an indication of
how well dispersed these locations are (less dispersion means
more overlapping rectangles and so less area is covered). The
total area covered is then normalised by dividing it by the area
of the structure’s bounding box, to giving the value of d. The
set factor X is used to adjust how much of an impact this
component has on the structure’s overall fitness value. This
section of the fitness function is described by equation (3):

1-d
L+ p|

(3)

B. Block Type Variety

One of the new components that we have added to our
fitness function is the variety of blocks within the structure
relative to the number of rows it contains. Instead of simply
rewarding structures with more blocks (as the original method
tended to do) which would highly favour smaller block types,
we instead favour structures that are constructed using a wide
variety of different block types. v is defined as the number

84.2

Paper 49

of different block types in the structure and n is defined as
the number of rows within the structure. The set factor Y is
used to adjust how much of an impact this component has on
the structure’s overall fitness value. This section of the fitness
function is described by equation (4):
v n
n+v

(C))

C. Structure Robustness

The other new component that we have added to our
fitness function is the overall robustness of the structure
against rotation. Although we will only accept a structure if
our quantitative stability analysis method deems it globally
stable, this does not tell us anything about how stable or
robust the structure really is. In order to estimate this, we
favour structures that will remain stable even when rotated.
The structure being evaluated is rotated both clockwise and
anticlockwise with angle intervals of five degrees, until the
structure hits 45-degree rotation in each direction or becomes
unstable. This gives a total of 18 possible angles at which the
structure could be stable. 7 is defined as the number of these
angles at which the structure was deemed stable. The set factor
Z is used to adjust how much of an impact this component
has on the structure’s overall fitness value. This section of the
fitness function is described by equation (5):

,
Z(1— ﬁ) 5)

D. Complete Fitness Function

The sum of all these separate components for pig placement
potential, block type variety and structure robustness makes up
the complete fitness function, described by equation (6):

1—-d n

YY" za-) (©)

F=X
1+ |p| n+v 18

VI. EXPERIMENTS AND RESULTS

Several experiments were carried out to test different com-
ponents of the structure generator and fitness function.

A. Probability Table Optimisation

As previously mentioned, a probability table for block
type selection can be optimised over many generations using
our specified fitness function. The training algorithm used
for updating this fitness function is the same as described
in [13]. To summarise, for each training generation nine
separate structures are created. These nine structures are then
ranked using the fitness function previously described. The
frequency of block types in each structure is then used to
update the corresponding sections of the probability table,
with the highest ranked structures having the greatest impact
and the lowest ranked structures having the least impact. The
probability table values are then renormalised so that they
again sum to one. Please see the original paper for full details
on the probability table optimisation algorithm.

For our experiment, we initialised the probability table with
equal values for all block types (1/13) and then repeatedly
generated structures of random sizes (width limits between
3.0 and 10.0). For our fitness function, we defined: X = 1.0,

o
o v ©
Nn w

Probability
o
=
w

0.1

0 50 100 150 200 250 300
Generations

Fig. 4: Probability table values for each block type over
multiple generations.

Y = 0.5, Z = 0.5. This gives roughly equal weighting to the
pig placement potential and block type variety components
of the fitness function, with a slightly higher emphasis on
the structure robustness component. The probability table
was then updated over 300 generations of training (total of
2700 structures) with the current state of the probability table
recorded after each generation. The result of this experiment is
illustrated in Figure 4 (block types with an r-subscript indicate
blocks that have been rotated ninety degrees).

From this graph, we can see that over time the probability
values for block types 1, 2, 6, 7 and 8 tended to increase
(although the probability for block type 1 appeared to be
decreasing towards the end), whilst the values for block types
2r, 3,4, 5, 5r, 6r, 7r and 8r all decreased. This indicates that our
function tends to favour wider blocks, as they provide a larger
and more disperse set of possible pig locations, and also likely
increase the overall robustness of the structure. The block
type variety component of the fitness function keeps structures
that contain only these desirable blocks from becoming too
dominant, as we can see that the probability values tended to
fluctuate over time.

Whilst this training process could carry on indefinitely, this
would likely result in very small probability values for a
significant number of block types. We therefore decided to
cease training once the probability of selection for any block
type dropped below 2.0%. In our case, this occurred for block
type 7r after 131 generations. This optimised probability table
was then used when analysing the expressivity of our new
level generator.

B. Generator Runtime

The majority of our procedural level generation algorithm
was coded using Python 3.4. The only exceptions being our
quantitative stability analysis program, coded in C++, and our
collection of Agents from the 2016 AIBirds competition, each
of which was coded in Java. This software was all run on an
Ubuntu 14.04 desktop PC with an i7-4790 CPU and 16GB
RAM. For our experiments we generated 200 levels using
our optimised probability table, each containing between two
and four ground structures, between one and three platform
structures, and between 6 and 10 pigs (all values selected
randomly for each new level generated). For block swapping
we defined .S = 0.5. For terrain variation we defined G = 0.5.

50 Generating Varied, Stable and Solvable Levels for Angry Birds Style Physics Games

1 2 2r 3 4 55 6 6r 7 7r 8 8 9 1010r 11 12

Frequency
O = N W B U1 NN 0 W

Block Type

Fig. 5: Average frequency for each block type.

For TNT placement we defined A = 1.0, B = 0.005, C' = 2.0,
D =0.8, T,,, = 5 and S,,, = 6.0. For material selection we
defined p; = 0.3, p. = 0.2 and n = 10. All other generator
variables were defined the same as those used in [14]. With the
exception of the Angry Birds agents which will be discussed
later, the average combined runtime of all other level generator
components was 54.1 seconds. Additionally, our quantitative
stability analysis program found a structure stable 68.2% of
the time and produced no false positives.

C. Expressivity Analysis

The expressivity of a level generator is the space of all levels
it can generate and is measured by evaluating various aspects
of a level to identify its strengths and weaknesses. Several met-
rics have been proposed to analyse a generator’s expressivity
[19], [20]: frequency, linearity, density and leniency.

1) Frequency: Frequency evaluates the number of times
that a block type occurs within a level. Figure 5 shows
the average frequency of each block type within a level.
Unsurprisingly, we can see that smaller block types such as
4, 5 and 5r have a much higher average frequency than larger
block types. This is despite the fact that all three of these
block types had their probability of selection reduced from
their original values in the optimised probability table. This
would suggest that the frequency of these block types would
be even higher had we not optimised the probability table. The
wider thinner block types favoured by our fitness function also
appear much more frequently than their rotated counterparts.
However, the difference is not as large as one would expect
based purely on our optimised probability values. For example,
the probability of selecting block type 8 is nearly five times
as large as selecting block type 8r, yet its frequency is not
even double that of 8r. This is likely due to the fact that wider
block types are more likely to fulfil the necessary support
requirements with a fewer number of blocks. Thinner block
types require more blocks to satisfy these conditions and so are
placed more frequently. However, overall, we can see that no
block type has a restrictively small frequency value, meaning
that the variety of structures created by our generator has not
been severely reduced by the use of our fitness function to
optimise the probability table.

2) Linearity: Linearity measures the “profile” of generated
levels. Levels with objects placed at multiple heights through-

out the level space will have a low linearity, while levels where
the objects follow a straight line will have a high linearity.
Linearity is measured by performing a linear regression, taking
the centre points of all blocks, platforms, pigs and TNT boxes
as our data points. Each level is then scored based on its R?
value. The average linearity of a generated level is 0.0581,
with a standard deviation of 0.0652. This result shows that
our levels are highly non-linear, with objects being distributed
throughout the entire level space.

3) Density: The density of a level represents the compact-
ness of the objects placed within it. Density is measured by
calculating the total area of all blocks, platforms, pigs and
TNT boxes within the level space. This is then divided by the
total size of the level space to give a value indicating how
much of the level’s area was taken up by these objects. The
average density of a generated level is 28.7%, with a standard
deviation of 5.23%. We believe this density percentage is
suitable, as levels with a low density are likely to be sparse
and uninteresting, whilst levels with a high density are likely
to be too congested.

4) Leniency: Leniency is used to express how difficult a
level is to successfully complete (i.e., kill all pigs with the
birds provided). The difficulty of an Angry Birds level is
therefore almost solely dependent on the number of birds
provided to the player. This is in turn heavily dependent on
the skill of the Angry Birds agents used to decide this number.

We therefore propose a new measure of leniency for games
where agents are employed to verify that the levels created are
solvable. We utilise a Naive agent that makes each of its shots
at a randomly selected pig as the base method for determining
the number of birds required to solve a level. Each of the other
Agents is then compared against this. An agent that performs
much better than the naive approach would indicate that not
only is this agent very skilled, but that it is better at selecting
the minimum number of birds required to solve a level. The
difference between the best performing agent and this Naive
agent is therefore a suitable measure of Leniency.

Eight agents from the 2016 AlIBirds competition (including
the Naive agent) were used to play the generated levels. Each
of these agents has a different strategy for solving Angry
Birds levels, with some using heuristic approaches, logic
programming, or even simulations, in an attempt to solve them.
All these agents were given three attempts to solve each level,
and the number of birds that it took was recorded. The average
number of birds (up) required by each agent, as well as the
standard deviation (o) and runtime (seconds), to solve each of
the levels is provided in Table I.

From this we can see that the Datalab agent performed the
best, with an average of 3.40 birds used for each level. The
Naive agent took 4.79 birds on average, giving us a leniency
measure of -1.39 for the levels generated. This measure
could be reduced even further (increased level difficulty) by
developing either agents that can solve levels better, or levels
that are harder for the Naive agent to solve. We can also see
that the combined runtime for testing a level using all these
agents is very high. It would therefore make more practical
sense to only use a smaller subset of very good agents to

§4.2 Paper 51

TABLE I:

AVERAGE NUMBER OF SHOTS REQUIRED BY EACH AGENT
Agent Shots (o) Runtime (seconds)
HeartyTian 4.35] 2.32 93.5
AngryHex 6.32 | 3.28 151.4
Datalab 3.40 | 1.42 78.5
SEABirds 3.85 | 2.11 125.1
S-Birds 4.04 | 1.89 213.0
Naive 4.79 | 2.54 132.7
IHSEV 7.20 | 2.98 250.6
BamBirds 4.67 | 1.77 124.2

determine the bird number for a level. This means that by just
using the Datalab agent we are able to generate a stable and
solvable level on average every 132.6 seconds.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented a procedural level generation
algorithm for Angry Birds style physics games, which can
guarantee that the levels it creates are both stable and solvable.
This generator builds upon a previously proposed algorithm
to substantially increase the variety and validity of the levels
created. Improvements not only to structures and terrain within
these levels, but also to their evaluation and optimisation,
produces levels greatly superior to those previously generated.
We have also utilised Angry Birds agents to ensure that
the levels created are solvable, arguably the most important
requirement for level generation algorithms.

Each of the structures we generate is evaluated using a high-
level fitness function, which considers pig placement potential,
block type variety and structural robustness. This function can
then be used to evolve the probability of selecting certain block
types over multiple generations, resulting in a more fine-tuned
and enjoyable set of levels. Each section of this fitness function
can also be weighted independently, allowing the user to define
which aspects of the generated levels are most important.

Our proposed level generator was evaluated in terms of its
expressivity using a wide assortment of metrics: frequency,
linearity, density, and leniency. These metrics were calculated
using not only the type of objects within each level, but
also their position and quantity. The results of this analysis
demonstrated that our structure generator can create a broad
range of levels with many desirable attributes.

There is an extensive range of future possibilities for this re-
search. One example could be to develop a structure generation
method that can create structures that are no longer segmented
into distinct rows, or perhaps angled structures for sloping
terrain. Another obvious improvement would be not to the
level generator itself, but rather to the Al agents. The difficulty
of procedurally generated content is particularly troublesome
to measure, especially with games such as this which contain a
near continuous state and action space. Improving the skill of
these Al agents may also help improve the interest or quality
of the levels we create, as it could be that levels which can only
be completed by more advanced agents require a certain degree
of skill or ingenuity to solve. Agents could also be used to alter
the content of generated levels more than just the number of

birds, perhaps by testing out different combinations of fitness
values during training, or removing certain TNT boxes or bird
types that were not used effectively. Performing a user study
that compares these levels against those of the original Angry
Birds would also give a good indication of the overall quality
of the levels generated, as well as how the performance of our
suggested agents compares to that of typical players.

REFERENCES

[1] M. Hendrikx, S. Meijer, J. V. D. Velden, and A. Iosup, “Procedural
content generation for games: A survey,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 9, no. 1, pp. 1-22, 2013.

[2] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and Al in Games, vol. 3,
no. 3, pp. 172-186, 2011.

[3] S. Dahlskog and J. Togelius, “Patterns and procedural content genera-
tion: Revisiting mario in world 1 level 1,” in Proceedings of the First
Workshop on Design Patterns in Games. ACM, 2012, pp. 1:1-1:8.

[4] G.N. Yannakakis and J. Togelius, “Experience-driven procedural content
generation,” IEEE Transactions on Affective Computing, vol. 2, no. 3,
pp. 147-161, 2011.

[S] N. Shaker, M. Shaker, and J. Togelius, “Evolving playable content for
cut the rope through a simulation-based approach,” in Proceedings of the
Ninth AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2013, pp. 72-78.

, “Ropossum: An authoring tool for designing, optimizing and
solving cut the rope levels,” in AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, 2013, pp. 215-216.

[7] M. Shaker, N. Shaker, J. Togelius, and M. Abou-Zleikha, “A progressive
approach to content generation,” in /8th European Conference on the
Applications of Evolutionary Computation, EvoApplications 2015, 2015,
pp. 381-393.

[8] L. Ferreira and C. Toledo, “A search-based approach for generating
angry birds levels,” in Computational Intelligence and Games (CIG),
2014 IEEE Conference on, 2014, pp. 1-8.

, “Generating levels for physics-based puzzle games with estimation
of distribution algorithms,” in Proceedings of the 11th Conference on
Advances in Computer Entertainment Technology. ACM, 2014, pp.
25:1-25:6.

[10] M. Kaidan, T. Harada, C. Y. Chu, and R. Thawonmas, ‘“Procedural
generation of angry birds levels with adjustable difficulty,” in 2016 IEEE
Congress on Evolutionary Computation (CEC), 2016, pp. 1311-1316.

[11] L. T. Pereira, C. Toledo, L. N. Ferreira, and L. H. S. Lelis, “Learning
to speed up evolutionary content generation in physics-based puzzle
games,” in 2016 IEEE 28th International Conference on Tools with
Artificial Intelligence (ICTAI), 2016, pp. 901-907.

[12] M. Shaker, M. H. Sarhan, O. A. Naameh, N. Shaker, and J. Togelius,
“Automatic generation and analysis of physics-based puzzle games,” in
Computational Intelligence in Games (CIG), 2013 IEEE Conference on,
2013, pp. 1-8.

[13] M. Stephenson and J. Renz, “Procedural generation of complex stable
structures for angry birds levels,” in 2016 IEEE Conference on Compu-
tational Intelligence and Games (CIG), 2016, pp. 1-8.

, “Procedural generation of levels for angry birds style physics
games,” in Twelfth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE-16), 2016, pp. 225-231.

[15] P. Mawhorter and M. Mateas, “Procedural level generation using
occupancy-regulated extension,” in Proceedings of the IEEE Conference
on Computational Intelligence in Games (CIG), 2010, pp. 351-358.

[16] Z.lJia, A. Gallagher, A. Saxena, and T. Chen, “3D-based reasoning with
blocks, support, and stability,” in 2013 IEEE Conference on Computer
Vision and Pattern Recognition, 2013, pp. 1-8.

[17] A. G. M. Blum and B. Neumann, “A stability test for configurations of
blocks,” Massachusetts Institute of Technology, Tech. Rep., 1970.

[18] J. Renz, “AIBIRDS: The angry birds artificial intelligence competition,”
in Proceedings of the 29th AAAI Conference, 2015, pp. 4326-4327.

[19] G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proceedings of the 2010 Workshop on Procedural Content
Generation in Games. ACM, 2010, pp. 4:1-4:7.

[20] B. Horn, S. Dahlskog, N. Shaker, G. Smith, and J. Togelius, “A
comparative evaluation of procedural level generators in the mario Al
framework,” in Foundations of Digital Games 2014, 2014, pp. 1-8.

[6]

[9]

(14]

52 Generating Varied, Stable and Solvable Levels for Angry Birds Style Physics Games

Chapter 5

The 2017 AIBIRDS Level
Generation Competition

5.1 Foreword

This paper describes the motivation, setup, entrants, results and supplementary anal-
ysis, regarding the 2017 AIBIRDS level generation competition. Our proposed gener-
ator, described in the previous paper, was declared the winner in terms of both ‘Fun’
and ‘Creativity’. This paper also demonstrates that while our search-based genera-
tion algorithm is certainly effective at creating Angry Birds levels, it is not the only
example available.

5.2 Paper

M. Stephenson, J. Renz, X. Ge, L. Ferreira,]. Togelius, P. Zhang, The 2017 AIBIRDS
Level Generation Competition, IEEE Transactions on Games (TOG), 2018, pp. 1-10.

53

54 The 2017 AIBIRDS Level Generation Competition

The 2017 AIBIRDS Level Generation Competition

Matthew Stephenson, Jochen Renz, Xiaoyu Ge, Lucas Ferreira, Julian Togelius, and Peng Zhang

Abstract—This paper presents an overview of the second
AIBIRDS level generation competition, held jointly at the 2017
IEEE Conference on Computational Intelligence and Games,
and the 26th International Joint Conference on Artificial In-
telligence. This competition tasked entrants with developing a
level generator for the physics-based puzzle game Angry Birds.
Submitted generators were required to deal with many physical
reasoning constraints caused by the realistic nature of the game’s
environment, in addition to ensuring that the created levels
were fun, challenging and solvable. This year’s competition
was a significant improvement over the previous year, with a
greater number of participants and more advanced generators.
Within this paper we describe the framework, rules, submitted
generators and results for this competition. We also provide some
background information on related research and other video
game Al competitions, as well as discussing what can be learned
from this year’s competition. There are several game and real-
world applications for this type of research, and we provide some
examples of the types of levels we would like future competition
entries to generate.

Index Terms—Angry Birds, procedural content generation,
level generation, physics-based games, AI competitions

I. INTRODUCTION

Over the past several years, many different AI competitions
focused around video games have become extremely popular.
Many of these competitions have yielded promising results and
improvements for the wider AI community, and have been
hosted at several major international conferences including
CIG, AIIDE, IICAI, ECAI, GECCO and FDG to name just
a few. Whilst competitions and challenges centred around Al
playing classic board games, such as chess with Deep Blue
and more recently Go with DeepMind’s AlphaGo [1], have
been incredibly popular and successful, video games typically
provide a much more complex and challenging domain in
which to interact. Past video game AI competitions have
mostly focused on developing intelligent agents that can play
the game(s) successfully, but other competition objectives are
possible. One of the most popular focuses for video game Al
competitions apart from agents, is that of procedural content
generation (PCG).

PCG is the automatic creation of game content without
manual interaction by a human designer [2] and is a major
area of investigation within the video game industry from both
a research and business perspective [3]. The most common
reason for utilising PCG is that it can dramatically increase
the range of available content within a game whilst still being

M. Stephenson, J. Renz, X. Ge and P. Zhang are with the Research School
of Computer Science, Australian National University, Canberra, A.C.T. 0200,
Australia, e-mail: (matthew.stephenson@anu.edu.au).

L. Ferreira is with the Department of Computational Media, University of
California in Santa Cruz.

J. Togelius is with the NYU Game Innovation Lab, Tandon School of
Engineering, New York University.

cheap and effective. Creating a large amount of high quality
content is extremely time consuming if performed manually by
a designer. PCG can be a good solution for many large or low-
budget games by dramatically reducing a game’s development
time, as well as expanding the available content and lowering
memory consumption [4]. PCG can also be used to create
an almost endless amount of content, and helps ensure that
no two experiences are likely to be the same. In particular,
the ability to automatically generate a huge range of varied
and complete levels allows the player to keep playing nearly
indefinitely, without the game becoming too repetitive.

The most common types of “game content” that are gener-
ated are usually levels or sub-sections of levels, referred to as
procedural level generation (PLG). PLG has been previously
implemented in many different game types, including real-time
strategy [5], [6], platform [7], racing [8], arcade [9], role-
playing [10], stealth [11] and rogue-like [12]. The General
Video Game Al Competition has also worked on attempting
to procedurally generate levels for multiple general games
[13], [14], although the results so far are somewhat mixed.
Several papers have also explored the use of PLG for physics-
based puzzle games such as Cut the Rope [15], [16] and, more
notably for this paper, Angry Birds [17], [18], [19], [20], [21],
[22], [23]. The physics constraints employed in these types
of games, along with the exceptionally large state and action
spaces, create many problems for PLG [24].

PLG is particularly difficult for physics-based puzzle games,
as the generator must not only deal with the physical con-
straints of the environment, but also still ensure that levels are
fun, solvable and challenging for the player. One such popular
game whose levels fit into this category is Angry Birds. This
game has been of interest to the wider Al game research
community for many years, with the annual competition
focused around developing agents to play it (AIBIRDS agent
competition) drawing dozens of participating teams [25]. The
type of physical reasoning required to solve levels from this
game is very similar to that needed for an agent to operate
successfully in the real-world [26]. Physics-based games such
as Angry Birds provide an effective and realistic simulation
of the real-world for Al systems to try out their algorithms.
Generators attempting to create levels for this game must
be acutely aware of the game’s physics and know how to
create content that is viable within it. Angry Birds levels
typically contain multiple blocks and other objects that are
stacked or arranged together to create structures. Generating
and positioning these structures such that they are not only
stable but present an interesting and solvable puzzle for the
user is by no means an easy task. For these reasons, we believe
that the challenge of creating physically stable, enjoyable and
feasible levels for a game such as Angry Birds is well worth
exploring and researching.

§5.2 Paper 55

In this paper we present the description, entrants, results
and conclusions for the second AIBIRDS level generation
competition. Participating competitors developed PLG algo-
rithms for automatically creating Angry Birds levels. This
year’s competition added in many new game elements and
compatibility features which allowed generators to create far
more sophisticated and complex levels than had previously
been possible. This included the addition of multiple bird and
pig types, the ability to set the size of the level, and the
inclusion of several new game objects such as TNT boxes.
Generated levels must also satisfy certain user-defined criteria,
the specifics of which are discussed later. Participants were
also able to combine their level generator with the Al agents
from previous AIBIRDS agent competitions, providing them
with a way to analyse the difficulty and feasibility of their
generated levels. The submitted generators were evaluated by
several judging panels. These panels gave each generator a
rating based on the enjoyment, creativity and difficulty of the
levels it created.

The remainder of this paper is organized as follows: Section
II provides the background to this competition, including
past Al and PCG video game competitions, a description of
the Angry Birds game, and details on the related AIBIRDS
agent competition; Section III describes the competition itself,
providing details on the clone that is used instead of the actual
Angry Birds game, as well as the rules and judging procedure;
Section IV contains descriptions of the five generators submit-
ted to this year’s competition; Section V provides the results of
the competition. Section VI discusses the results of the com-
petition, providing some possible uses and improvements for
the generators as well as desired goals for future competitions;
Section VII presents our final conclusions.

II. BACKGROUND
A. Previous Al and PCG video game competitions

Examples of popular Al competitions (both past and
present) include the Mario Al Championship, which originally
revolved around developing agents for solving Super Mario
Bros levels [27], [28] but also had a secondary track focussing
on level generation [29], the StarCraft Al Competition [30], the
Visual Doom AI Competition (ViZDoom) [31], the Geometry
Friends Game AI Competition [32], the Fighting Game Al
Competition [33], as well as the aforementioned AIBIRDS
agent competition [26], [34]. The General Video Game Al
(GVGAI) Competition has also run several tracks around
developing agents for playing general video games. These
include the single-player planning track [35], the two-player
planning track [36], [37] and the learning track [38]. There
have also been several additional GVGAI competition tracks
focusing on general content generation, including the level
generation track [13], [14], [38] and the rule generation track
[39]. Physics-based games have also been recently added
to the GVGAI game collection [40], although the physics
system used is significantly limited in its current capabilities.
Compared to other games from previous competitions, Angry
Birds presents a complex physics-engine that level generators
must effectively reason about in order to be successful.

Fig. 1: Screenshot of a level from the Angry Birds game.

B. Angry Birds game

Angry Birds is a popular physics-based puzzle game where
in each level the player uses a slingshot to shoot birds
at structures composed of blocks, with pigs placed within
or around them [41]. The player’s objective is to kill all
the pigs within a level using the birds provided. A typical
Angry Birds level, as shown in Figure 1, contains a slingshot,
birds, pigs and a collection of blocks arranged in one or
more structures. All objects within the level have properties
such as location, size, mass, friction, density, etc., and obey
simplified Newtonian physics principles defined within the
game’s engine. Each block in the game can have multiple
different shapes as well as being made of one of three materials
(wood, ice or stone). Each bird is assigned one of five different
types (red, blue, yellow, black or white). Each of these bird
types are strong/weak against certain block materials, as well
some types possessing secondary abilities which the player
can activate during the bird’s flight. The player can choose the
angle and speed with which to fire a bird from the slingshot,
as well as a tap time for when to activate the bird’s special
ability if it has one, but cannot alter the ordering of the birds
or affect the level in any other way. Pigs are killed once they
take enough damage from either the birds directly or by being
hit with another object. The ground is flat but additional terrain
squares, which are impenetrable and unaffected by gravity, can
be added anywhere. TNT can also be placed within a level
and will explode when hit by another object. The difficulty of
this game comes from predicting the physical consequences
of actions taken, and accurately planning a sequence of shots
that results in success. Points are awarded to the player once
the level is solved based on the number of birds remaining
and the total amount of damage caused.

C. AIBIRDS agent competition

Although the AIBIRDS level generation competition is only
in its second year, the AIBIRDS agent competition has been
running annually since 2012. Entrants in this competition
are tasked with developing an agent that can play and solve
unknown Angry Birds levels. This competition was created as
a means to promote the research and creation of intelligent
agents that can reason and predict the outcome of actions in
a physical simulation environment [34]. This type of physical
reasoning problem is very different to traditional games as
the attributes and parameters of various objects are often

56 The 2017 AIBIRDS Level Generation Competition

9 hlo
)

8

3 Ha

Fig. 2: The twelve different block shapes available.

imprecise or unknown, meaning that it is very difficult to
accurately predict the outcome of any action taken [42].
Whilst not directly related to the AIBIRDS level generation
competition, it is possible to use these agents to aid with
evaluating the generated levels. We also discuss later some
ways in which both these competitions could be combined to
help create better levels, as well as increasing the abilities and
performance of the agents.

III. AIBIRDS LEVEL GENERATION COMPETITION
A. Science Birds

Angry Birds is a commercial game developed by Rovio
Entertainment who do not provide an open-source version
of their code. Instead we use a Unity-based clone of the
Angry Birds game developed by Lucas Ferreira called Science
Birds [23], which is open-source and available to download
from GitHub [43]. This clone provides many of the necessary
elements to generate levels very similar to those of Angry
Birds in a realistic physics environment. There are currently
twelve different block shapes available, see Figure 2. Each
block is assigned one of three materials (wood, ice or stone)
and can also be rotated to any arbitrary angle. There are five
different bird types (red, blue, yellow, black and white) as
well as three different sizes of pig (small, medium and large).
There are also TNT boxes that explode when hit, and terrain
squares than can be used to make floating platforms or other
static areas of the level.

The size and material of blocks impacts their physical
properties and how much damage they can withstand before
they are destroyed. The size of a pig also determines the
amount of damage needed to kill it. The special abilities of
each of bird type are described below, along with the materials
that they are strongest/weakest against:

o Red bird: No special ability, neither strong nor weak

against any specific material.

o Blue bird: Splits into three birds when tapped, strong
against ice blocks, weak against stone blocks.

e Yellow bird: Shoots forward in a straight line with
increased speed when tapped, strong against wood blocks,
weak against ice blocks.

« Black bird: Explodes either when tapped or after hitting
an object, strong against stone blocks.

o White bird: Drops an egg directly downwards when
tapped, this egg explodes after hitting another object.

All of these described object types can be seen in the
example Science Birds level shown in Figure 3. It has three

Fig. 3: An example level of the Science Birds game.

<?xml version="1.8" encoding="utf-16"?>
<Level width="2">
<Camera x="8" y="0" minwidth="28" maxWidth="26">
<Birds>
<Bird type="BirdRed"/>
<Bird type="BirdBlue"/>

<Bird type="Bi

<Bird type=

<Bird type="Birdwhite"/>

</Birds>
<Slingshot x="-9" y="-2.5">

<GameObjects>
<Block type="RectTiny" material="wood" x="2. "
<Block type="RectTiny" material="wood"” x="1. "/
<Block type="SquareHole” material="wood" x="2. S
<Block type="SquareHole"” material="stone™ x="2. />
<Block type="RectTiny™ material="stone™ x="1. />
<Block type="RectTiny" material="stone™ x="2. />
<Block type="RectTiny" material="ice" x="2. />
<Block type="RectTiny" material="ice" x="L. />
<Block type="SquareHole” material="i x="2. />
<Pig type="BasicSmall” material= x="2. e
<Pig type="BasicSmall” material= x="2. />
<Pig type="BasicSmall” material= x="2. />
<Platform type="Platform™ material= »x="1. e
<Platform type="Platform™ material= »x="1. e
<Platform type="Platform” material= x="2. e
<Platform type="Platform” material= x="3. e
<Platform type="Platform” material= x="2. i
<Platform type="Platform” material= x="2. />
<Platform type="Platform" material= »x="3. />
<Platform type="Platform" material= x="2. />
<Platform type="Platform" material= »x="1. />
<Platform t "Platform” material= x="a. />

<TNT type="
</GameObjects>
</Level>

" rotation="@" />

Fig. 4: XML representation of the example Science Birds level
from Figure 3.

blocks of each material, three pigs, a TNT box and five birds
(one of each type). Moreover, it has two rows of static square
platforms floating in the air.

Levels are represented internally using a XML format. This
format is composed of the size of the level, the number, type
and order of birds, the position of the slingshot, and a list of
game objects, as shown in Figure 4. Each game object has
four attributes:

« Type: String representing the type of the object.

« Material: String defining the material of a block. Valid
values are only “wood”, “stone” and “ice”. Certain ob-
jects such as pigs, platforms and TNT do not need a
material.

« X, Y: Float numbers representing the position of the game
object. The origin (0,0) of the coordinates system is the
centre of the level.

« Rotation: Float number that defines the rotation of the
game object (optional).

§5.2 Paper

57

B. Rules

To ensure that generators entered into the competition do
not simply produce hand-designed levels, submitted generators
must create levels in accordance with an input data file. This
file contains the necessary requirements about the levels that
will be generated. This is provided as four separate lines
containing the following information in the given order:

o Number of levels to generate (positive integer)

« Forbidden block and material combinations (list of invalid

materials/block shapes, e.g. “Stone Triangle”)

« Range for number of pigs (two positive integers, mini-

mum and maximum)

« Time limit to generate levels in minutes (positive integer)

During the competition, information about what levels to
create is passed to each generator using this input file. These
restrictions were not too severe, as the goal is not to generate
levels for specific structure requirements, but to simply ensure
that all levels are created autonomously without too much
designer influence. The time limit value was always set to
one hour for every ten levels, which based on past competition
experience should not be an issue for most generators.

C. Baseline generator

All competition entrants were provided with a baseline
level generator written in python, which provides a simple
and effective method for generating levels within Science
Birds. Participants were able to improve and enhance the
baseline algorithm to create more advanced level generator
software. It was also possible for participants to create their
own level generators from scratch using any programming
language, providing fresh ideas and insight into generating
fun and exciting levels. For a more in-depth explanation of
the baseline structure and level generation processes, as well
as examples of its generated levels, please refer to the detailed
competition instructions available from the AIBIRDS website
[44]. Software for allowing Angry Birds agents developed for
the AIBIRDS agent competition to play generated levels was
also provided, along with a simple naive agent for solving
levels. This naive agent always targets a randomly selected pig,
but more sophisticated open-source agents are available from
the AIBIRDS forum and can be integrated with the Science
Birds program very easily.

D. Judging and scoring

During the competition, each generator created 10 levels
from each of 10 different input files, giving 10 groups of 10
levels. A single level from each of these groups was then
selected at random. The selected levels from each generator
were then combined to form one single group, giving 10 levels
for each generator, with the ordering of levels in each group
randomised. This was done to ensure that no generator is
unfairly punished by a particular input file. Generated levels
were evaluated based on three different criteria. The first is
how fun and enjoyable the level is to play and determines the
overall competition ranking (main prize). The concept of “fun”
was left deliberately vague to prevent biasing judges as much

as possible. The second criterion is how creative the level
design is (secondary prize). The third is how well balanced
the difficulty of the level is (secondary prize). Several panels
of judges evaluated each generator based on its levels, giving
it a rating between zero (total failure, levels not generated or
restrictions violated) and ten (perfectly designed levels) for
each of the three level evaluation criterion. The judges also
penalised any level generator that generated levels which were
deemed too similar to each other (i.e. little variation between
the levels generated). The final score for each level generator
is the total rating across all judging panels.

IV. COMPETITION GENERATORS
A. MSG (v2.0)

The MSG (v2.0) generator was created by Matthew
Stephenson from the Australian National University in Aus-
tralia. It builds upon a previous level generator, originally
described in [20], [18], which was the runner-up in the 2016
AIBIRDS level generation competition.

It generates levels consisting of a collection of independent
structures, constructed using the twelve block shapes available.
A probability table is used to determine the likelihood of a
particular block shape being selected. Each block shape is
given a probability of selection, with all probabilities summing
to one. Structures generated using this algorithm are made
up of rows, with each row initially consisting of a single
block shape. Blocks within each row can also be randomly
swapped with other block shapes that have the same height.
These structures can have multiple peaks and feature a variety
of placement methods for each row of blocks. Local stability
requirements are enforced and more rows can be added until
the structure reaches the desired size. Global structural stability
is verified using quantitative analysis calculations, described
in [45]. These structures are then distributed throughout the
level, either on the ground (ground structures) or atop floating
platforms (platform structures). The number of ground and
platform structures, as well as their respective width and height
limits, is determined randomly within a pre-defined range.
Ground structures can also be placed on hills of varying
heights, which are created using static terrain blocks.

Once these structures have been placed the level is popu-
lated with pigs, distributed on and within the created struc-
tures. Possible positions for pigs are identified and ranked
based on a combination of structural protection and location
dispersion. Pigs are then placed using this ranking until a
desired number of pigs is reached. Possible TNT positions are
also identified in the same manner, and are ranked based on a
combination of projected damage and location dispersion. The
material of each block within a structure is chosen randomly
using one of several approaches. These include trajectory
analysis (based on shot trajectories from the slingshot to a
pig or TNT), clustering, row grouping, structure grouping and
random selection. The generator then attempts to identify and
protect critical weak points throughout the level. A weak point
is defined as a block within a structure that can be hit directly
by a player’s shot (reachable) and that if removed would
affect a large number of other blocks and/or pigs. Blocks that

58 The 2017 AIBIRDS Level Generation Competition

Fig. 5: Screenshot of a level from the MSG (v2.0) generator.

are identified as potential weak points can be protected by
either placing additional protection structures next to it, adding
additional support blocks within its structure row, or setting
its material to stone.

The prevalence of certain block materials, as well as the
degree to which pigs are reachable or protected, dictates the
desired ratio and ordering of bird types. The number of birds
is decided using a collection of intelligent agents from the
previous AIBIRDS agent competitions, with the number of
birds required by the best performing agent to solve the level
selected. This ensures that every generated level is solvable,
as an agent has already solved it beforehand. Further details
on this generator can be found in [46]. An example level from
this generator is shown in Figure 5.

B. Funny Quotes ft. Dominoes

The Funny Quotes ft. Dominoes generator was created by
Yuxuan Jiang, Ryota Ishii, Tomohiro Harada and Ruck Tha-
wonmas from Ritsumeikan University in Japan. It generates
levels that consist of a quote, a formula, or a word combined
with dominoes (a series of tall, thin blocks placed next to each
other). It is based in part on a previous generator Funny Quotes
[47] (the defending Champion from the 2016 AIBIRDS level
generation competition), but to generate a combination of
words and dominoes, Monte Carlo Tree Search (MCTS) [48]
is used. In MCTS, a level is evaluated by the following criteria:

« Readability of generated characters forming a word.

o Variety of blocks.

« Usage of dominoes.

« Proximity of the proportion of the used area to the golden
ratio (1.62).

The structure of each level type is as follows:

1) Quote levels: These levels consist of a popular quote,
with each letter and punctuation made up using smaller blocks.
There are 100 possible quotes, such as “We will be back”,
“Need your Vote”, and “Relax bro!”. Pigs are placed on
top of these quotes. with the number of pigs in each level
selected randomly between the minimum and maximum. If
there is insufficient space to place the minimum number of
pigs required, then additional pigs are placed on a platform
above the slingshot.

EEER]
FECH
EEEk]

Hgﬁwm

Fig. 6: Screenshot of a level from the Funny Quotes ft.
Dominoes generator.

2) Formula-like levels: These levels consist of a simple
mathematical formula using the mathematical symbols +, —,
x, + and =, as well as numbers. Similar to the quote levels,
each of these symbols and numbers are made out of smaller
block shapes. Pigs are used in these formulae to represent
certain numbers (e.g. 8 pigs rather than the number 8). The
number of pigs in each level is selected randomly between the
minimum and maximum.

3) Word-plus-domino levels: The level’s area is divided into
four sub-areas, each of which is then filled with either a word
or dominoes. 75 different words are available, each having
up to six characters, such as “Love”, “Happy”, and “Luck!”.
Pigs are then placed on top of these words, as well as on top
of domino blocks. If the number of initially assigned pigs is
more than the maximum allowed, one pig is removed from
the sub-area with the highest number of pigs. This is repeated
until the number of pigs equals the maximum allowed. If the
number of initially assigned pigs is less than the maximum
allowed, additional pigs are placed on a platform above the
slingshot.

The number of birds is always set to one more than the
number of pigs. Further details on this generator can be found
in [47]. An example level from this generator is shown in
Figure 6.

C. MCTS ft. Blocks

The MCTS ft. Blocks generator was created by Yuxuan
Jiang, Tomohiro Harada and Ruck Thawonmas from Rit-
sumeikan University in Japan. Inspired by the work of Graves
[48], Monte Carlo Tree Search (MCTS) is used to place super-
blocks (a stack of multiple blocks) and pig/TNT islands to
create levels. The main difference between this generator and
Graves’ is that this generator creates a super-block each time
according to a set of rules which ensures stability, but Graves’
generator uses a collection of pre-determined stable structures.
In addition, super-blocks and pig/TNT islands are randomly
placed in the generated levels, while such objects are placed
in a zig-zag fashion with Graves’ generator.

In order to create a super-block, a block shape and a material
are selected randomly from the list of usable blocks. Selected
blocks are then stacked up subject to some rules, sometimes

§5.2 Paper 59

Fig. 7: Screenshot of a level from the MCTS ft. Blocks
generator.

with a pig on the top, to a predefined height. Next, a platform
is added under a super-block. A platform is also added under
a pig (or TNT) to form a pig (or TNT) island. MCTS is used
to find the best combination of super-blocks, pig islands and
TNT islands in the usable level area in terms of maximizing
the following:

o Variety of blocks.

o Usage of pig or TNT islands.

« Proximity of the proportion of the used area to the golden

ratio (1.62).

The number of pigs is always set to the maximum, and the
number of birds is always set to one more than this. The level’s
area is divided into four sub-areas. If the number of initially
assigned pigs is more than the maximum allowed, one pig is
removed from the sub-area with the highest number of pigs.
This is repeated until the number of pigs equals the maximum
allowed. If the number of initially assigned pigs is less than the
maximum allowed, additional pigs are placed on a platform
above the slingshot. An example level from this generator is
shown in Figure 7.

D. Tanager

The Tanager generator was created by Lucas Ferreira from
the University of California in Santa Cruz, United States. It
generates levels based on a genetic algorithm that is capable
of producing stable and solvable levels. This genetic algorithm
starts with an initial population composed of levels with
randomly sampled stacks of blocks, pigs and birds. A fitness
function evaluates stability, playability and structural charac-
teristics of the levels via game simulations, where unplayable
levels are penalized. A tournament method selects levels for
reproduction based on their fitness values. New levels are
created by crossover and mutation operators that try to keep
the level stable. All new levels compose the population of the
next generation, except the worst one that is replaced by the
best level from the current generation (elitism). The generator
stops after a given number of generations or if the fitness of
the best level does not improve after multiple generations.

A level is encoded as a genotype composed of a number of
birds and a list of stacks of blocks. The first element encodes
the number of birds and all the others encode stacks. A

Fig. 8: Screenshot of a level from the Tanager generator.

block can be either elementary or composed, where elementary
blocks are unitary pieces connected to form composed ones.
Elementary or composed blocks can also be duplicated, and
in this case they are added in the stack beside another one
exactly like them. Each block is represented by a pair (4,b),
where ¢ is an integer representing the index of the block and
b is a Boolean representing if that block is duplicated or not.
The number of stacks can be different for each level and the
stack sizes can change within a level.

A fitness function is used to measure if a level is fully stable
and if the number of birds is enough to kill all the pigs. These
two metrics are calculated using a game simulation with an
intelligent agent. Stability is measured by the total velocity of
the blocks during the first few seconds of the simulation. A
level is only considered feasible if the number of pigs p; at
the end of the simulation is equal to zero. The fitness function
is mathematically described by Equation 1.

fitness(x) = ||bp* B| — By|+|[ln* L] — Ly| +ps+s (1)

In this function, B is a constant that defines the maximum
number of birds allowed in a level, B, is the number of
birds used during the simulation. The constant L defines the
maximum number of blocks allowed in a level and L, is the
number of blocks in the beginning of the simulation. /,, and
b, represent the percentage of blocks in the level and the
percentage of birds that is needed to kill all pigs respectively.
s measures the stability of all blocks in the level.

The first term of the equation calculates the distance be-
tween the number of birds that should be used to kill all the
pigs and the number that was actually used. The second term
calculates the distance between the number of blocks desired
in the level and the number of blocks that the level started
with. If these terms are both zero, the level has all the desired
characteristics. Further details on this generator can be found
in [49]. An example level from this generator is shown in
Figure 8.

E. Scrap Maps

The Scrap Maps generator was created by Ryota Ishii,
Tomohiro Harada and Ruck Thawonmas from Ritsumeikan

60

The 2017 AIBIRDS Level Generation Competition

Fig. 9: Screenshot of a level from the Scrap Maps generator.

University in Japan. The Unity physics engine is used to
simulate blocks falling from the sky, which are then saved
to give the final level appearance.

A large collection of blocks and pigs are randomly selected
from the list of usable objects each time a level is generated.
These selected blocks and pigs are then temporarily placed at
the top of the level (or the sky), each with a random position.
The Science Birds game engine is then used to simulate these
objects falling from the sky to ground. For this to work
successfully, the game’s settings are changed such that the
blocks cannot be broken and the pigs cannot be killed. When
all objects have fallen to the ground, the position and rotation
of all blocks and pigs is saved. The number of pigs in a level is
chosen randomly between the minimum and maximum values
allowed. The number of birds is fixed to seven. The type of
each bird is selected randomly. An example level from this
generator is shown in Figure 9.

V. RESULTS

As this competition was held jointly at CIG17 and IJCAI17,
judging panels were used at both conferences. We had 7
panels of independent judges in Melbourne (IJCAI17) and 4
panels of independent judges in New York (CIG17). The level
selection process for each generator was carried out separately
beforehand. Judging panels were given the exact same levels
from each generator, and were presented them in the exact
same order. Each judging panel evaluated all 50 levels and
reported the results back to the organisers in terms of scores
between 0 and 10 for each of the five different generators,
for each of the evaluation categories (Fun, Creativity and
Difficulty). The identity of the generators and which levels
belonged to which generator was kept a secret until after
the judging scores were all aggregated and the ranking was
finalised. It was vital to make sure this process was absolutely
fair, as two of the five generators were from members of
the organisation committee. Total and median scores for each
generator are presented on the left side of Table I. A box plot
for each generator based on the final scores from all judging
panels is shown in Figure 10.

The Fun ratings for each generator determined the overall
competition winner, with Creativity and Difficulty being ad-
ditional secondary categories. The generator with the highest

Fun rating was MSG (v2.0), with Funny Quotes ft. Dominoes
second, and MCTS ft. Blocks third. Likewise for the Creativity
category, MSG (v2.0) was the highest rated, followed by
Funny Quotes ft. Dominoes and MCTS ft. Blocks in second
and third place respectively. However, the Difficulty category
was won by Funny Quotes ft. Dominoes, an improved version
of last year’s overall winner, with MCTS ft. Blocks second
and MSG (v2.0) third.

Ten of the eleven judging panels rated MSG (v2.0) highest
in terms of Fun, whilst one judging panel who liked the
Scrap Maps generator the most rated MSG (v2.0) second best.
Therefore, the MSG (v2.0) generator was the clear winner,
with the Funny Quotes ft. Dominoes generator in second place,
the MCTS ft. Blocks generator in third place, the Tanager
generator in fourth place, and the Scrap Maps generator in
fifth place.

A. Feature comparison

By comparing the properties of the generated levels against
the judge’s scores, we can attempt to identify whether there
are certain level characteristics that may result in greater
player enjoyment. There are four common measures that have
been used previously to evaluate the expressivity of a level
generator [50], [51]: frequency, linearity, density and leniency.
Leniency is a measure of how difficult a level is to complete,
and is often the hardest property to quantify and analyse.
As the difficulty of the levels was already considered by
judges during their evaluation, we chose not to investigate it
further (agent performance could also have been used but was
deemed less reliable than humans). Linearity represents the
overall “profile” of a level, and is measured with the R? value
from a linear regression calculation using the centre point
of all game features present in a level’s XML description.
Density represents the compactness of a level and is calculated
based on how much of a level’s available space is taken up
by objects. Frequency represents the number of certain level
features that are present within a level. While there are many
different and complex features for an Angry Birds level [52]
that can be compared using frequency analysis, we decided to
only focus on the basic features due to the limited size of our
test set. The level features we considered were:

o Number of pigs.

o Number of blocks (for each material).
o Number of birds (for each type).

o Number of TNT boxes.

Due to the fact that some of the generated levels, partic-
ularly those created by the Scrap Maps generator, moved or
responded to the physics of the game after initialisation, all
values were recorded from levels after any initial movement
had ceased. The average frequency of each feature across
all 10 judged levels for each generator (normalised for each
feature type separately) are presented in Figure 11. The
average linearity and density values for each generator across
these same levels are presented on the right side of Table I.

Spearman’s rank correlation coefficients were calculated
comparing the judging panel’s rankings for each generator
against the frequency of our selected level features, as well

§5.2 Paper 61

TABLE I
GENERATOR TOTAL (MEDIAN) SCORES AND EXPRESSIVITY ANALYSIS RESULTS

Generator Fun Creativity Difficulty Final Linearity Density
MSG (v2.0) 80.5 (8) 72.9 (7) 59.6 (5) 213.0 (20) 0.0516 28.86%
Funny Quotes ft. Dominoes | 60.2 (5) 60.4 (6) 78.4 (8) 199.0 (19) 0.0603 37.57%
MCTS ft. Blocks 52.2 (5) 449 (4) 69.1 (6) 166.2 (16) 0.0216 15.66%
Tanager 44.5 (3) 37.7 (3) 46.7 (4) 128.9 (11) 0.0567 18.81%
Scrap Maps 28.0 (2) 28.0 (2) 21.0 (2) 77.0 (7) 0.0421 29.90%
30 0.8
07 B AIMSG (v2.0)
25 ’ B Funny Quotes ft. Dominoes
0.6 B MCTS ft. Blocks
o 20 05 n Tanager
g I Scrap Maps
%]
s 15 | |
=
10
5
Y pigs wood ice stone red blue vyellow black white TNT
MSG (v2.0) Funny Quotes MCTS ft. Blocks Tanager Scrap Maps blocks blocks blocks birds birds birds birds birds
ft. Dominoes Level Features

Fig. 10: Box plot for each generator based on the final scores
from all judging panels.

as for both the density and linearity of the judged levels.
Unfortunately, due to the limited number of levels that were
judged for each generator, and the fact that each generator’s
levels vary so dramatically in design, it is unclear whether any
identified correlations are merely due to random variation. For
example, there was a high correlation (p = 0.77) between the
number of TNT boxes in a level and the Fun score given by
judges. However, this is likely due to the fact that only the
MSG (v2.0) and MCTS ft. Blocks generators created levels
that contained TNT, and the former far more than the latter.
Another strong correlation (p = 0.93) was between the number
of pigs and the Difficulty score for a level. This again could
simply be due to the fact that the top two generators in this
category, Funny Quotes ft. Dominoes and MCTS ft. Blocks,
usually always give levels with the maximum number of pigs
possible. You would also assume that the number of birds
given to the player would impact the Difficulty score for a
level, but this was not the case. It would seem that either Angry
Birds is far too complex a game to have the enjoyment and
challenge of its levels identified using only simple properties,
or that not enough data is currently available for a reliable
analysis. Bearing this in mind, general overall trends did seem
to indicate that judges preferred levels with more pigs, blocks
and TNT (i.e. more objects to interact with).

VI. DISCUSSION
A. Competition overview and limitations

Overall the competition went fairly smoothly, with all
generators running successfully and levels displaying correctly.
However, there are several changes or improvements that we

Fig. 11: Normalised average number of features (frequency
measure) for each generator’s judged levels.

feel could make it even better, particularly with how generators
are compared. While there are defined evaluation categories,
the values attributed to each level is currently decided solely
by the judging panels. Deciding whether a generator creates
levels that are deemed “too similar” is also left to the discretion
of the judges. Ideally, it would be better to have a more
reliable and unbiased means of scoring generators and the
levels they create. However, this is a very difficult task, as
there is currently no effective way of evaluating a level for
complex concepts such as enjoyment. We can also see that
the generator rankings for the Fun and Creativity categories
are identical, suggesting that perhaps judges were slightly
confused about the exact meaning of this latter category.
Introducing additional criteria such as aesthetic appeal or level
variety might help refine this evaluation process and allow
different generators to focus on different level aspects. It may
also be beneficial to ask judges why they preferred certain
levels over others using either a questionnaire or ranking
system. This would require more of the judge’s time and
additional human resources in interpreting the responses, but
may help us develop better generators in the future.

B. Generator comparison

From the competition’s results it seems very clear that
the MSG (v2.0) generator was favoured by the majority of
judging panels. While this generator competed in the previous
year’s competition it was only rated second out of three
participating generators, losing to the previous version of the
Funny Quotes generator. Its newfound success this year was
likely due to a number of key improvements in terms of how
levels were designed, as well as additional features such as

62 The 2017 AIBIRDS Level Generation Competition

TNT placement, intelligent material/bird type selection, and
using agents to guarantee solvability. The Funny Quotes ft.
Dominoes generator was ranked second overall, but did win
the Difficulty category. This was likely due to its sophisticated
difficulty calculations, and the fact that the agents used by
the MSG (v2.0) generator to playtest levels beforehand often
resulted in giving the player more birds than was necessary.
Scrap Maps was easily the least preferred generator which was
likely caused by its unconventional level design, as well as the
fact that many blocks and pigs would move or be destroyed
after the level had initialised. The Tanager generator was also
rated poorly which was probably due to the fact that it was not
fully completed before the competition was run, and so could
only produce structures made of wooden blocks and would
always give the player only red birds.

C. Combining AIBIRDS competitions

There are several ways in which the two AIBIRDS com-
petitions (agent and level generation) could be combined. As
previously mentioned, the agents provided by the AIBIRDS
agent competition can be used to evaluate and test the levels
created by the generators. These agents could also be used
to test a generated level against different playstyles, or to
determine whether it is currently too hard or too easy based
on the number of agents that can solve it and how long it
takes them. Whilst the benefits that an agent can provide to
a level generator should be clear, a level generator can also
be used to improve the performance of Al agents. One major
advantage of having level generators available is that it is now
possible to create large numbers of training and test levels
for developing improved Al agents for the AIBIRDS agent
competition. In particular, agents based on deep reinforcement
learning, a technique that has taken much of Al by storm and
is very successful for many other games, would benefit greatly
from a large number of available levels. Generating levels also
provides a means of evaluating an agent beyond the original
hand-designed levels that the game currently provides. In
fact, several levels created by this year’s submitted generators
were converted and used in the most recent AIBIRDS agent
competition. We also hope to be able to link both the AIBIRDS
agent and level generation competitions in the future, perhaps
with agents trying to beat generated levels and generators
trying to create levels that are difficult for agents.

D. Generator improvements

While the depth and range of levels generated by the entries
to this year’s competition are very impressive, we believe that
there are several ways they could be improved in the future. A
typical improvement for PLG-based work is to create genera-
tors that can adapt to the skills and preferences of individual
players [53], [54]. Generators would ideally be able to identify
which “types” of levels a player is enjoying the most or which
have the right amount of difficulty, and would then generate
personalised levels that suit this player more. This would be
challenging to perform in a competition style scenario, but
would not be impossible. Another useful improvement would
be to generate levels that require planning or creative reasoning

to solve. A possible means of measuring this was postulated in
[46], where it was suggested that levels which more advanced
agents can solve but less skilled agents cannot, might be more
likely to engage players as the solution would probably not be
immediately apparent. Generators could also be more flexible
in terms of the features their levels contain, allowing them to
fulfil more specific designer requirements. Ideally an end goal
for this work would be to develop generators that can create
levels which are indistinguishable from “real” hand-designed
levels. This is an extremely challenging task, especially for
a game as complex and varied as Angry Birds, but would
be an incredibly valuable scientific and industry resource if
it could be achieved. Physical level generators, such as those
submitted to this competition, might also have some additional
real-world uses for automated design and construction.

VII. CONCLUSION

In this paper we have presented an overview of the sec-
ond AIBIRDS level generation competition. The complexity
and variety of levels created by this year’s generators was
significantly higher than in last year’s competition. A greater
number of judges were also used for evaluating levels from
two separate locations, and the feedback received from the
wider Al and video game research communities was extremely
positive. We would also like to thank all members of our
organising committee, competition entrants, judging panel
volunteers, as well as all conference attendees at both CIG17
and IJCAI17 for their contribution and making this event
possible. We hope to continue this competition next year and
encourage all interested teams to participate in this exciting
challenge.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484-489, 2016.

[2] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” [EEE
Transactions on Computational Intelligence and Al in Games, vol. 3,
no. 3, pp. 172-186, 2011.

[3] M. Hendrikx, S. Meijer, J. V. D. Velden, and A. Iosup, ‘“Procedural
content generation for games: A survey,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 9, no. 1, pp. 1-22, 2013.

[4] S. Dahlskog and J. Togelius, “Patterns and procedural content genera-
tion: Revisiting Mario in world 1 level 1,” in Proceedings of the First
Workshop on Design Patterns in Games, 2012, pp. 1:1-1:8.

[5]1 J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelback, G. N.
Yannakakis, and C. Grappiolo, “Controllable procedural map generation
via multiobjective evolution,” Genetic Programming and Evolvable
Machines, vol. 14, no. 2, pp. 245-277, 2013.

[6] R. Lara-Cabrera, M. Nogueira-Collazo, C. Cotta, and A. J. Fernndez-
Leiva, “Procedural content generation for real-time strategy games,” In-
ternational Journal of Interactive Multimedia and Artificial Intelligence,
pp. 40-48, 2015.

[7]1 L. Ferreira, L. Pereira, and C. Toledo, “A multi-population genetic
algorithm for procedural generation of levels for platform games,”
in Proceedings of the Companion Publication of the 2014 Annual
Conference on Genetic and Evolutionary Computation, 2014, pp. 45-46.

[8] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Interactive evolution
for the procedural generation of tracks in a high-end racing game,” in
Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation, 2011, pp. 395-402.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

§5.2

Paper 63

M. Cook and S. Colton, “Multi-faceted evolution of simple arcade
games,” in Computational Intelligence and Games (CIG), 2011 IEEE
Conference on, 2011, Conference Proceedings, pp. 289-296.

V. Valtchanov and J. A. Brown, “Evolving dungeon crawler levels
with relative placement,” in The Fifth International C* Conference on
Computer Science and Software Engineering, 2012, pp. 27-35.

Q. Xu, J. Tremblay, and C. Verbrugge, “Generative methods for guard
and camera placement in stealth games,” in AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, 2014, pp.
87-93.

D. Stammer, H. Mannheim, T. Gnther, and M. Preuss, “Player-adaptive
Spelunky level generation,” in 2015 IEEE Conference on Computational
Intelligence and Games (CIG), 2015, pp. 130-137.

A. Khalifa, D. Perez-Liebana, S. M. Lucas, and J. Togelius, “General
video game level generation,” in Proceedings of the Genetic and
Evolutionary Computation Conference 2016, ser. GECCO ’16, 2016,
pp- 253-259.

X. Neufeld, S. Mostaghim, and D. Perez-Liebana, “Procedural level gen-
eration with answer set programming for general video game playing,”
in 2015 7th Computer Science and Electronic Engineering Conference
(CEEC), 2015, pp. 207-212.

N. Shaker, M. Shaker, and J. Togelius, “Evolving playable content for
Cut the Rope through a simulation-based approach,” in Proceedings of
the Ninth AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 2013, pp. 72-78.

M. Shaker, N. Shaker, J. Togelius, and M. Abou-Zleikha, “A progressive
approach to content generation,” in /8th European Conference on the
Applications of Evolutionary Computation, EvoApplications, 2015, pp.
381-393.

L. T. Pereira and C. F. M. Toledo, “Speeding up search-based algorithms
for level generation in physics-based puzzle games,” International
Journal on Artificial Intelligence Tools, vol. 26, no. 05, 2017.

M. Stephenson and J. Renz, “Procedural generation of levels for Angry
Birds style physics games,” in Twelfth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE-16), 2016, pp.
225-231.

L. T. Pereira, C. Toledo, L. N. Ferreira, and L. H. S. Lelis, “Learning
to speed up evolutionary content generation in physics-based puzzle
games,” in 2016 IEEE 28th International Conference on Tools with
Artificial Intelligence (ICTAI), 2016, pp. 901-907.

M. Stephenson and J. Renz, “Procedural generation of complex stable
structures for Angry Birds levels,” in 2016 IEEE Conference on Com-
putational Intelligence and Games (CIG), 2016, pp. 1-8.

L. Ferreira and C. Toledo, “Generating levels for physics-based puzzle
games with estimation of distribution algorithms,” in Proceedings of the
11th Conference on Advances in Computer Entertainment Technology,
2014, pp. 25:1-25:6.

M. Kaidan, T. Harada, C. Y. Chu, and R. Thawonmas, “Procedural
generation of Angry Birds levels with adjustable difficulty,” in /EEE
Congress on Evolutionary Computation (CEC), 2016, pp. 1311-1316.
L. Ferreira and C. Toledo, “A search-based approach for generating
Angry Birds levels,” in Computational Intelligence and Games (CIG),
2014 IEEE Conference on, 2014, pp. 1-8.

M. Shaker, M. H. Sarhan, O. A. Naameh, N. Shaker, and J. Togelius,
“Automatic generation and analysis of physics-based puzzle games,” in
Computational Intelligence in Games (CIG), 2013 IEEE Conference on,
2013, pp. 1-8.

AIBIRDS, “AIBIRDS agent benchmarks,”
https://aibirds.org/benchmarks.html, 2017, accessed: 2017-11-14.

J. Renz, “AIBIRDS: The Angry Birds artificial intelligence competition,”
in AAAI Conference on Artificial Intelligence, 2015, pp. 4326-4327.

J. Togelius, N. Shaker, S. Karakovskiy, and G. Yannakakis, “The Mario
Al championship 2009-2012,” Al Magazine, vol. 34, pp. 89-92, 2013.
S. Karakovskiy and J. Togelius, “The Mario Al benchmark and com-
petitions,” IEEE Transactions on Computational Intelligence and Al in
Games, vol. 4, no. 1, pp. 55-67, 2012.

N. Shaker, J. Togelius, G. N. Yannakakis, B. Weber, T. Shimizu,
T. Hashiyama, N. Sorenson, P. Pasquier, P. Mawhorter, G. Takahashi,
G. Smith, and R. Baumgarten, “The 2010 Mario AI championship: Level
generation track,” IEEE Transactions on Computational Intelligence and
Al in Games, vol. 3, no. 4, pp. 332-347, 2011.

S. Ontan, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and
M. Preuss, “A survey of real-time strategy game Al research and com-
petition in StarCraft,” IEEE Transactions on Computational Intelligence
and Al in Games, vol. 5, no. 4, pp. 293-311, 2013.

M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jakowski, “ViZ-
Doom: A Doom-based AI research platform for visual reinforcement

[32]

[33]

[34]

[35]

[36]

[37]

[39]

[40]

[41]

[42]

[43]
[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

learning,” in 2016 IEEE Conference on Computational Intelligence and
Games (CIG), 2016, pp. 1-8.

R. Prada, P. Lopes, J. Catarino, J. Quitrio, and F. S. Melo, “The
geometry friends game Al competition,” in 2015 IEEE Conference on
Computational Intelligence and Games (CIG), 2015, pp. 431-438.

F. Lu, K. Yamamoto, L. H. Nomura, S. Mizuno, Y. Lee, and R. Tha-
wonmas, “Fighting game artificial intelligence competition platform,” in
2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE),
2013, pp. 320-323.

J. Renz, X. Ge, S. Gould, and P. Zhang, “The Angry Birds Al
competition,” Al Magazine, vol. 36, no. 2, pp. 85-87, 2015.

D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, S. M. Lucas,
A. Coutoux, J. Lee, C. U. Lim, and T. Thompson, “The 2014 general
video game playing competition,” IEEE Transactions on Computational
Intelligence and Al in Games, vol. 8, no. 3, pp. 229-243, 2016.

R. D. Gaina, D. Prez-Libana, and S. M. Lucas, “General video game for
2 players: Framework and competition,” in 2016 8th Computer Science
and Electronic Engineering (CEEC), 2016, pp. 186-191.

R. D. Gaina, A. Couetoux, D. Soemers, M. H. M. Winands,
T. Vodopivec, F. Kirchgebner, J. Liu, S. M. Lucas, and D. Perez,
“The 2016 two-player GVGAI competition,” IEEE Transactions on
Computational Intelligence and Al in Games, 2017.

D. Perez-Liebana, S. Samothrakis, J. Togelius, S. Lucas, and T. Schaul,
“General video game AIL: Competition, challenges, and opportunities,”
in 30th AAAI Conference on Artificial Intelligence, AAAI 2016. AAAI
press, 2016, pp. 4335-4337.

T. S. Nielsen, G. A. B. Barros, J. Togelius, and M. J. Nelson, “Towards
generating arcade game rules with VGDL,” in 2015 IEEE Conference
on Computational Intelligence and Games (CIG), 2015, pp. 185-192.
D. Perez-Liebana, M. Stephenson, R. D. Gaina, J. Renz, and S. M.
Lucas, “Introducing real world physics and macro-actions to general
video game ai,” in 2017 IEEE Conference on Computational Intelligence
and Games (CIG), 2017, pp. 248-255.

“Angry Birds game,” https://www.angrybirds.com/games/angry-birds/,
accessed: 2017-11-14.

J. Renz, X. Ge, R. Verma, and P. Zhang, “Angry Birds as a challenge
for artificial intelligence,” in AAAI Conference on Artificial Intelligence,
2016, pp. 4338-4339.

L. N. Ferreira, “Science birds,
Birds, 2017, accessed: 2017-12-12.

AIBIRDS, “AIBIRDS homepage,” https://aibirds.org, 2017, accessed:
2017-11-14.

A. G. M. Blum and B. Neumann, “A stability test for configurations of
blocks,” Massachusetts Institute of Technology, Tech. Rep., 1970.

M. Stephenson and J. Renz, “Generating varied, stable and solvable
levels for Angry Birds style physics games,” in 2017 IEEE Conference
on Computational Intelligence and Games (CIG), 2017, pp. 288-295.
Y. Jiang, T. Harada, and R. Thawonmas, “Procedural generation of
Angry Birds fun levels using pattern-struct and preset-model,” in 2017
IEEE Conference on Computational Intelligence and Games (CIG),
2017, pp. 154-161.

M. Graves, “Procedural content generation of Angry Birds levels using
monte carlo tree search,” Master of Science in Engineering Thesis, The
University of Texas at Austin, 2016.

L. N. Ferreira and C. Toledo, “Tanager: A generator of feasible and
engaging levels for Angry Birds,” IEEE Transactions on Computational
Intelligence and Al in Games, 2017.

G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proceedings of the 2010 Workshop on Procedural Content
Generation in Games, 2010, pp. 4:1-4:7.

B. Horn, S. Dahlskog, N. Shaker, G. Smith, and J. Togelius, “A
comparative evaluation of procedural level generators in the Mario AI
framework,” in Foundations of Digital Games 2014, 2014, pp. 1-8.

M. Stephenson and J. Renz, “Creating a hyper-agent for solving angry
birds levels,” in AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment, 2017.

G. N. Yannakakis and J. Togelius, “Experience-driven procedural content
generation,” IEEE Transactions on Affective Computing, vol. 2, no. 3,
pp. 147-161, 2011.

C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling player
experience for content creation,” IEEE Transactions on Computational
Intelligence and Al in Games, vol. 2, no. 1, pp. 54-67, 2010.

5

https://github.com/lucasnfe/Science-

64

The 2017 AIBIRDS Level Generation Competition

Chapter 6

Generating Stable, Building Block
Structures from Sketches

6.1 Foreword

This paper presents a mixed-initiative generator for creating Angry Birds struc-
tures based on rough human sketches. From developing our own autonomous level
generator, as well as comparing it against other alternative algorithms through the
AIBIRDS level generation competition, we noticed that the generated levels are often
limited in their variety and complexity compared to hand-designed levels. While
using such generators to create additional levels is certainly useful for a variety of
reasons, relying on them alone for evaluating or training agents is likely to result in
us missing crucial challenges or design aspects. While possessing some very mi-
nor adjustable level parameters, such as the number of pigs or structures, these
autonomous level generators are generally not suitable for assisting human level
designers in realising their creative ideas. Manually designing Angry Birds levels
by hand is currently an incredibly difficult process, essentially requiring all objects
within the level to be individually and precisely defined using a text editor. Our
proposed sketch-based generation system provides an intuitive and easy to use ap-
proach for allowing humans to design their own creative and challenging levels in
Angry Birds.

6.2 Paper

M. Stephenson, J. Renz, X. Ge, P. Zhang, Generating Stable, Building Block Struc-
tures from Sketches, Computer Games Workshop at [JCAI-ECAI'18, Stockholm, Swe-
den, July 2018, pp. 1-10. Revised version submitted to IEEE Transactions on Games
(TOG).

65

66 Generating Stable, Building Block Structures from Sketches

Generating Stable, Building Block Structures from
Sketches

Matthew Stephenson, Jochen Renz, Xiaoyu Ge, and Peng Zhang

Abstract—This paper presents a structure generation algo-
rithm which converts rough human drawings into stable struc-
tures comprised of rectangular blocks, suitable for physics-based
2D environments. Generating viable structures for a physics-
based environment imposes many additional requirements above
those of most traditional sketch-based domains. Our method
is sophisticated enough to deal with these requirements, while
still ensuring that the generated structure accurately represents
the original sketch. We describe and implement a framework
for this process, allowing inexperienced users to create complex
structures with ease. Multiple structure possibilities are identified
for a single drawing and are then compared based on their
similarity to the original sketch using a heuristic value. We
evaluate our approach by investigating its ability to replicate
structures for the video game Angry Birds, based on human
drawn sketches of the original levels.

I. INTRODUCTION

Al assisted generation of digital content with minimal or
reduced human input, also known as procedural content gen-
eration, has become an increasingly popular area of research
over the past few years [1]. This process allows for the fast
and efficient generation of suitable content, without the need
for experienced designers or developers. However, the methods
implemented for achieving this typically have a very limited or
unintuitive range of options for designer control [2], [3]. This
makes it difficult for the average user to design and create
their own content. One possible solution to this problem is to
implement a mixed-initiative generator, where Al techniques
help assist the user in the content generation process (i.e. user
and system have a near-equal contribution) [4].

A common method for allowing users to interact with
a mixed-initiative generator is via a sketch recognition and
understanding system, where hand drawn sketches are passed
into the generator as inputs [5]. Ideas for digital content
typically start with a concept drawing, which then must be
precisely coded into the digital environment by hand. This
process is time consuming, and constraints or limitations of
the environment that were not previously considered must be
manually checked. The use of a sketch-based interface for
the automatic generation of content, referred to in this paper
as sketch-based generation, allows users to design and create
their own content quickly and intuitively, without the need for
expert domain knowledge or programming skills.

Previous applications and research around sketch recogni-
tion has been conducted in many different areas, including de-
signing analog electrical circuits [6], creating UML diagrams

M. Stephenson, J. Renz, X. Ge and P. Zhang are with the Research School
of Computer Science, Australian National University, Canberra, A.C.T. 0200,
Australia, e-mail: (matthew.stephenson@anu.edu.au).

[7], drawing chemical molecule structures [8], and solving
physics-based problems [9]. Several algorithms have also been
proposed to generate virtual content for video games from 2D
human sketches. These include designing maps for strategy
games [10], levels for 2D platformers [11], building 3D game
worlds [12], modelling human characters [13], and creating
virtual garments [14]. However, none of these methods have
had to consider whether or not the result is feasible within a
realistic physics-based environment. This type of environment
places additional restrictions on the generated content, such
as a limited number of resource options or requiring that
the result be stable. Several previous programs for creating
content within a physics-simulation have been developed, such
as CogSketch [15], SketchyDynamics [16] and PhysicsBook
[17], but these also make no attempt to fix the generated
content and simply recreate exactly what the user has drawn.
In this paper we present an approach to generate stable and
feasible structures for a 2D physics environment, based solely
on human sketches. These input sketches comprise of multiple
axis-aligned, rectilinear (aka. orthogonal) polygons, that can
be placed next to and on top of each other. The generated
output structures based on these sketches are created using
rectangular building blocks, with a pre-set number of different
block dimensions (shapes) available. Each generated structure
should satisfy the requirements of the environment (stable on
flat ground, no overlapping blocks, etc.) while representing
the original sketch’s design as closely as possible. Unlike
prior sketch-based interfaces for creating content in physics-
simulations, our proposed generation process does not merely
replicate the design of the input sketches, but also ensures the
physical viability and constraints of the generated structure are
maintained. We believe that this task is sufficiently complex
and novel to be worthy of investigation, posing many different
challenges for the areas of physical and spatial reasoning.

A. Angry Birds

The specific example we will use to demonstrate the benefit
of solving this problem is for the popular video game Angry
Birds. This game utilises a 2D physics-based environment and
its levels often consist of one or more structures composed
of multiple rectangular blocks, providing a perfect example
domain to evaluate our approach. Angry Birds has also been
used for multiple Al competitions focused around generating
and solving levels [18]. Multiple level generators for Angry
Birds currently exist, the latest of which offer several options
for designer influence and requirements [19], [20]. However,
the level of control that designers have over the generated

§6.2 Paper

67

content is still very minimal, offering little more than some
simple specifications such as the size of the structures or the
number of block shapes available.

Another recent level generation paper for Angry Birds
proposed a mixed-initiative generation system that allows the
user to design structures using a built-in drawing tool [21].
However, this system is exceptionally primitive in its current
form, allowing users to only draw blocks using a predefined
grid and requiring that all blocks have either a width or height
of exactly one grid unit. This process essentially corresponds
to users selecting which squares of the gird they want filled
using straight lines of a fixed width, rather than sketching the
whole structure’s design in the traditional sense, which results
in structures that are hugely simplified compared to more
traditional Angry Birds levels. This method also offers no real
analysis on the stability of the generated structures, leaving
most of this to the human designer. Overall this approach can
only be loosely called a sketch-based generation method, and
can only create vastly simplified versions of structures that are
atypical for Angry Birds.

The sketch-based generation system proposed in this paper
allows for much greater designer control in terms of the
look and overall aesthetic of the desired structures, whilst
still ensuring that the generated levels are feasible within the
game’s physics engine. We demonstrate that our generation
method provides a fast and effective way of developing
level prototypes, and that even inexperienced users can create
detailed and personalised structures with ease.

II. STRUCTURE GENERATION APPROACH

In order to generate stable, building block structures based
on human drawn sketches, several different sub-problems must
be solved. Each of these can be treated as a separate task
with multiple possible approaches and solutions. This section
provides detailed descriptions and possible solutions for each
of these problems, as well as other additional features that
either improve the end result or reduce the generator’s runtime.

1) Process Overview: We first provide an overview of the
entire generation process from original sketch to final gener-
ated structure. 1) Identify separate polygons within the input
sketch and split any non-rectangular polygons into rectangular
components. These rectangles are then combined to make a
full structure. 2) This structure is tested for stability, and
suitably adjusted if need be. 3) The rectangles within the
structure are grouped based on their position, size and shape,
which helps improve the generation process. 4) Composite
block shapes are created by combining multiple regular blocks
together. 5) All rectangles are scaled to be closer in size to
the available block shapes. 6) The final generated structure is
recursively built one block at a time, by selecting for each
scaled rectangle the block shape that is closest to its size
and aspect ratio. If when selecting a block shape any of
several requirements are violated (structure is unstable, blocks
overlap, etc.) then the block is either moved or swapped out
for a different block shape. This continues until a structure
that satisfies all requirements has been generated. 7) The
generated structure is evaluated using a similarity heuristic

calculation between itself and the original sketch. Multiple
different structures can often be created for the same sketch by
changing certain generation parameters (e.g. scaling method,
structural requirements, block adjustment options), which can
then be ranked based on their similarity heuristic values.

A. Polygon Splitting under Stability

Problem: Split a collection of sketched, roughly axis-
aligned, rectilinear polygons into a collection of rectangles
that mimics the shape of the original input sketch; with an
optimisation criteria that the structure created by these output
rectangles be stable on a flat horizontal plane under the
influence of gravity.

The first problem that we must solve is that of splitting
polygons within our input sketch into rectangles. To extract
the properties of each polygon from the sketch, we take
advantage of the fact that any collection of non-intersecting
rectilinear polygons can be uniquely determined based on its
vertices [22]. It is therefore possible to recreate the shape of
each polygon by simply identifying corners within the input
sketch. For our program we found that the Shi—-Tomasi corner
detection algorithm worked well enough [23], but other more
sophisticated methods are available [24], [25], [26], [27]. Note
that if all polygons within the sketch are already rectangular,
then a simple MBR (minimum bounding rectangle) detection
algorithm is sufficient to identify the properties of each. We
now attempt to replicate the shape of each identified polygon
using only rectangles.

Several papers have proposed solutions to this problem of
partitioning rectilinear polygons [28], [29], [30], [31], [32],
[33], but these methods have different optimisation criteria
(minimum number of rectangles, polynomial time approxima-
tion, maximum smallest rectangle dimension, minimum stab-
bing number, etc.) and do not take the physical nature of our
scenario into account. We therefore propose a new algorithm
for polygon splitting under stability (PSSA). Accompanying
diagrams for each step of PSSA are shown in Figure 1.

1) Polygon Splitting under Stability Algorithm (PSSA):

(a) Take as input a collection of roughly axis-aligned, recti-
linear polygons, orientated such that the vertical axis is
aligned with the gravitational force.

(b) Identify all corner positions P within the input using a
chosen corner detection algorithm (e.g. Shi—Tomasi).

(c) o For every point P; in P, create an associated set .S; of

all points in P that have x-axis location values within
a certain number of pixels n of P;’s x-axis location.
o If any two sets .S; and S; share a common point (.S; N
S; # 0), merge them together to make a new set .S;;
that is associated with both ¢ and j (S;; < S; U S;).
« For every point P; in P, make the x-axis location value
for P; equal to the average x-axis location value of all
points in its associated set.
« Repeat the above three steps for y-axis location values.
This step is done to account for any slight imperfections
in the sketch, essentially making sure that all polygons
are perfectly axis-aligned and rectilinear.

68 Generating Stable, Building Block Structures from Sketches

o iy
B .

7] M

]]

(a) (b)

e

] [
0 O

(d) (e

:I_I

i

—
l
i

| T |C

——

]

) (€9)

(h) ())]

Fig. 1: Polygon splitting under stability: (a) an example polygon sketch, (b) corners detected using our chosen algorithm (red
dots), (c) corners with similar x-axis or y-axis location values are made the same, (d) horizontal and vertical edges identified
between detected corners, (e) ray casting used to identify concave corners (red dots), (f) horizontal lines added at concave
corners, (g) rectangles that can be formed using these lines / edges are identified, (h) ray casting used to identify and remove
any rectangles that are actually holes. Figure (i) shows the result of PSSA on a rotated polygon sketch, whilst (j) shows the
negative result of using the same split lines for both the non-rotated and rotated input sketch (approach used by prior methods).

(d) From these adjusted corner positions P we identify all
horizontal and vertical edges E that connect them, using
the method described in [22].

(e) Ray casting is used to identify corners in P which are
concave (vertex points with an interior angle of 270
degrees) based on the number of edges in E that the
ray intersects.

(f) Additional horizontal lines are added to E at each
concave corner in P. These additional horizontal lines
originate from each concave corner in both the left and
right directions, stopping once they intersect another edge
in F.

(g) Based on this collection of lines £ we can create a
collection of possible rectangles R that they can form.

(h) Ray casting used to remove any rectangles in R that are
not solid regions (i.e. holes within the polygon).

By following the steps outlined in PSSA we can divide up
a sketch of one or more axis-aligned, rectilinear polygons into
a collection of solid rectangular regions (R) that accurately
represents its shape. Due to the fact that only horizontal lines
are added to the sketch in step (f), we can guarantee that
every rectangle created by PSSA touches another rectangle
on at least one of its horizontal edges. This guarantee heavily
increases the likelihood of R being stable, as it reduces the risk
of certain rectangles having none or minimal support. This also
means that the same polygon may be split differently based on
its orientation, which is not the case for other prior methods.
Figure 1 (i) represents the result of performing PSSA on the
same polygon sketch from Figure 1 (a) but rotated 90 degrees.
Even though Figure 1 (i) contains more rectangles than if we
used the same split lines from the original non-rotated sketch,

see Figure 1 (j), the result is far more stable (all rectangles
supported from below). This demonstrates how important it
is for an input sketch to be split differently based on its
orientation, which is something that other splitting methods
do not do.

In all subsequent sections of this paper, the term block
will be used to refer to a solid rectangular region, and a
collection of one or more axis-aligned, rectangular regions will
be referred to as a structure.

B. Stability Analysis / Adjustment

Problem: Estimate the stability of a structure that is resting
on a flat horizontal plane under the influence of gravity, and
if the structure is unstable propose a modification that makes
it stable.

Once all the rectangles (blocks) from our input sketch
have been confirmed, we next test for structural stability.
Determining local stability for each block can be calcu-
lated quickly based on qualitative stability relations from
the extended rectangle algebra (ERA) [34], but using this
alone often results in many unstable structures being falsely
classified as stable and vice versa. The actual stability of a
given structure can be calculated exactly, but only if all the
relevant physics parameters of the involved objects are known
(mass, shape, density, friction, mass distribution, etc.) [35].
In addition, this calculation often takes much longer than
qualitative approaches and provides no guidance as to how
to correct or adjust an unstable structure. Using a qualitative
stability analysis approach allows us to estimate the stability
of a structure much quicker, whilst sacrificing some accuracy.

§6.2 Paper 69

(@) (b) (©

Fig. 2: Original sketch (a), sketch after polygon splitting (b),
and the adjusted sketch after stability analysis (c).

1) Formal structure representation: Based on our input
structure we can construct a labelled directed graph where
there is a node IV; for each block B; within our structure and
directed edges to specify supporting relations between two
blocks. We call this the support graph (SG) of a structure. If
the top horizontal edge of a block B is touching the bottom
horizontal edge of block By (i.e. B; is resting on top of Bj),
then SG contains an edge pointing from N; to N». For the
sake of our definitions, the ground that a structure is resting
on can simply be taken to be another, albeit very large, block
(i.e. structure is resting on top of a ground block).

Definition. (Supporter, Support Depth, Supportees, Direct
Supporter, Direct Supportees, Support Area): Given a support
graph SG, if there exists a path from N; to N;, then block B;
is a supporter of block B; (B; supports B;). Support depth
SD(N;, N;) is the length of the shortest path from N; to N;. A
direct supporter of a block Bj; is a block B; where SD(N;, N;)
= 1. The supportees of block B; is the set of all blocks that B;
is a supporter of. The direct supportees of block B; is the set
of all blocks that B; is a direct supporter of. The support area
for a block B; is the horizontal interval between its leftmost
and rightmost direct supporters.

Using the example structure shown in Figure 2 (b) to help
reinforce these definitions, Block C is a direct supporter of
block D, an (indirect) supporter of block E, a direct supportee
of block B, and an (indirect) supportee of block A.

Each of these definitions can also be extended to apply to a
collection of blocks rather than just a single block. In this case
the output is equal to the combined outputs when the definition
is applied to each block within the collection, excluding blocks
in the output that are themselves members of the collection
being queried. (i.e. if @ = [4, B, C], then Supporters(Q) =
[Supporters(A) U Supporters(B) U Supporters(C)] — Q)

2) Prior qualitative methods: There are currently two main
qualitative methods which test for stability in 2D structures
composed of multiple rectangles. The first method tests the
stability of a structure by iteratively calculating the mass centre
for a set of blocks from top to bottom, and checking if the
vertical projection of this falls into the set of blocks’ support
area [36]. The second method determines structural stability
by taking each block within the structure and its supportees
as a substructure, and testing whether the vertical projection
of its mass centre falls into the substructure’s support area
[37]. When applied to structures containing only axis-aligned
blocks, it turns out that both methods perform exactly the same
calculations but in a different order. These methods have a
critical weakness however, in that all supporting blocks for

Algorithm 1 Stability Test

1: for all B in StructureBlocks do

2 Z <« [B]

3: X < [BU Supporters(B) U Supportees(B)]
4: for all S in Supportees(B) do

5: if all Supporters(S) in X then
6.

7

8

Z+—ZUS
end if
. end for
9: if (VPMC(Z) doesn’t fall into SupportArea(B) then
10: P «+ point in SupportArea(B) closest to VPMC(Z)

11: if VPMC(Z) is left of P then

12: A < area right of P

13: end if

14: if VPMC(Z) is right of P then

15: A < area left of P

16: end if

17: for all N in Supportees(B) ¢ Z do

18: if N overlaps A then

19: Z 4+ ZUN

20: end if

21: end for

22: if (VPMC(Z) doesn’t fall into SupportArea(Z) then
23: if VPMC(Z) is left of P then

24: Return False > B is unbalanced at point P (left)
25: end if

26: if VPMC(Z) is right of P then

27: Return False > B is unbalanced at point P (right)
28: end if

29: end if

30: end if

31: end for

32: Return True

the queried block’s set of supportees are considered when
calculating the supporting area. This assumption that all blocks
in a set are supported equally by all supporting blocks often
results in unstable structures being falsely classified as stable,
such as the structure as shown in Figure 2 (b). In this example,
block F is only a supporter of block E, but is also included
when determining if blocks B, C and D are stable using these
prior analysis methods.

3) Proposed algorithm: We therefore propose a new qual-
itative stability test that is able to give a better approximation
of stability compared to those previously described. For this
algorithm, we assume that the densities of all blocks are
uniformly distributed. This method does not produce perfect
results, as qualitative approaches can only ever provide an
estimate of stability, but is still able to detect the majority of
unstable cases. This method also provides detailed feedback
as to why a particular structure is unstable, allowing us to
immediately adjust the structure to account for this. Algorithm
1 describes our proposed stability test (Note. The vertical
projection of the mass centre is abbreviated to V PMC(C).

4) Unstable structure adjustment: Based on the outcome
of this stability test, we can adjust an unstable structure to
make it stable. By ordering the blocks in our input structure
based on the y-axis position of their mass centre, our improved
stability algorithm will return both the highest unbalanced
block (B is unbalanced at point P) and the side of that
block (left or right) that has too much weight on it. An
additional support block is then placed below either the left

70 Generating Stable, Building Block Structures from Sketches

or right edge of this unbalanced block, depending on which
side has too much weight. This added block’s width is set to
some default minimum value, and extends downwards until it
reaches another block (or the ground). The stability of the new
structure is then re-analysed, and this process repeats until the
structure is deemed stable.

Example. Using the same structure from Figure 2 (b), we
provide a step-by-step example to help explain our structure
analysis / adjustment process:

e Our algorithm first checks the stability of block E. As
block E has no supportees, the set Z simply contains
block E (Z=[E]) (lines 2-8). The vertical projection of
the mass centre of block E falls into its support area
(horizontal interval between blocks D and F) (line 9) so
this block is stable.

o Next we check the stability of block D. Block D has
block E as a supportee, but as block E has a supporter
that is not in X (block F), it will not be added to the
set Z (Z=[D]) (lines 2-8). the vertical projection of the
mass centre of block D falls into its support area (block
C) (line 9) so this block is stable.

o Next we check the stability of block C. Block C has two
supportees, blocks D and E. Block E is not added to the
set Z for the same reason as before, but all supporters
of block D are in X, so it is added to the set Z (Z=[C,
D]) (lines 2-8). The vertical projection of the mass centre
of the set of blocks [C, D] does not fall into the support
area of block C (just block B) (line 9), so potentially this
block is unstable. P is set to the rightmost point in block
B, and A is set to the area left of P (lines 10-16). None of
the supportees of block C that aren’t in Z (only block E
in this case) overlap A, so Z remains unchanged (Z=[C,
D]) (lines 17-21). As the vertical projection of the mass
centre of Z does not fall into its support area (block B)
(line 22), we conclude that the structure is unstable and
that block C is unbalanced on the right side of point P
(lines 23-28).

« Having determined both the highest unbalanced block (C)
and the side of it with too much weight (right) we add
an additional support block below the right edge of block
C, see Figure 2 (c). The stability of this new structure is
then re-analysed, but this time it is found to be stable.

C. Grouping Block Sets

Problem: Define and identify known rules / relations be-
tween blocks or sets of blocks within a given structure based on
their properties, that need to be satisfied during the generation
process.

Now that all blocks have been finalised, we can group
blocks within the structure together based on their position,
size and shape. This reasoning is not essential to the structure
generation process, but can help to significantly improve
its overall speed and accuracy by eliminating unfeasible or
undesirable possibilities early when selecting block shapes.
Two different systems are used to group similar blocks or sets
of blocks together, referred to as the height grouping and shape

grouping methods. Relations within each of these groupings
are also transitive.

Height Grouping Rule: Two sets of blocks are in the same
height group if they share both a direct supporter and a direct
supportee. If two sets of blocks are in the same height group,
then the combined heights of all blocks in each set must be the
same. Using the same example from Figure 2 (b), we can use
this rule to infer that the combined heights of blocks A, B, C
and D, must be the same as the height of block F. By following
this rule, we can significantly reduce the total runtime of our
structure generation process by helping to detect unfeasible
block shape combinations early when selecting block shapes
for our final generated structure (used later in section 2.6).

Shape Grouping Rule: Two blocks (B1 and B2) are in
the same shape group if the following conditions hold:

o Blyidth = B2y;qtn (Within set error percentage).

o Blpeight = B2peighe (Within set error percentage).

« (Bl, ~ B2,)V (Bl, ~ B2,) (within set error percent-

age).

o There are no other blocks between B1 and B2.

(Note. the x-axis and y-axis location values for a block
(Bg, By) are defined by its mass centre).

Any blocks within the same shape group must have the same
block shape. The shape grouping rule is not as structurally
important as the height grouping rule, but often leads to a
final generated structure that is much closer to the original
sketch (i.e. the shape grouping rule ensures that blocks in our
input sketch which were intended by the drawer to be the
same shape also have the same shape in the final generated
structure).

D. Composite Blocks

Problem: Generate additional composite block shapes
within pre-defined size limits, given a collection of regular
rectangular block shapes.

As well as the regular block shapes that are available, it is
also possible to combine multiple blocks together to create
additional composite blocks with new dimensions. While
initially similar in many regards to the rectangle packing
problem [38], [39], the task of creating suitable composite
blocks for 2D structures has many different considerations.
Unlike traditional packing problems we do not have a limited
number of blocks, only a limited number of block shapes.
Our proposed process for creating different composite block
options, within predefined limits on the maximum width
Widthpqe, and height Height,,,, that the block can have,
is as follows:

Given a collection of /N regular rectangular block shapes,
sort them together into a set of groupings G based on their
height. Remove from G any groupings that contain blocks with
a height greater than Height,, .. For each grouping G in G
perform the following:

Identify all ordered combinations Cj of blocks within
G, that when placed horizontally next to each other give
a width less than Width,,... Each combination Cj; in
Cy has three properties, the number of blocks within it
NumberBlocks(Cy;), its total width Width(Cy;), and the

§6.2 Paper 71

——
BRE=0A1D
11— [AT [
- = == i
2= i ==
e e —=- —= ©
(a) Scalemaa (b) Scalemia Scalemin

Fig. 3: Three example generated structures created from the
sketch in Figure 1, but using different scale calculations.

locations of all connection points where one block ends and
the next begins Connect Points(Cy;). Remove from Cj, any
combination CY; if there exists any another combination Cj;
where the following is true:

o Width(Cy;) = Width(Ck;)

o NumberBlocks(Cy;) > NumberBlocks(Cy;)

o ConnectPoints(Cr;) C ConnectPoints(Cl;)

This removal process eliminates blocks combinations in
C} that are the same width as another combination, but are
guaranteed to be equally or less structurally stable.

For each combination Cy; in C}, perform the following:

1) B=Cy

3) Add B to the set Dy;

4) Reverse the order of the blocks in Cy;

5) Add Cy; as a new extra row of blocks on top of B

6) If the height of B is less than Height,,q., Go to step 3

This gives us a set of composite block shapes Dy; for
each combination Cy; in C%. Each of these Dj; sets can
then be merged to give a combined set of composite block
shapes Dy for all combinations in Cx. All Di sets from
each Gy, grouping can then be merged to give a final set of
additional composite block shapes D, with dimensions not
possible using regular block shapes alone. Comparing the
generated structures in Figure 3 against the original rectangles
in Figure 1 (h), demonstrates how multiple real blocks can be
used to represent a single sketched block.

Note. In all subsequent sections, the term block shapes
includes both regular and composite block shapes.

E. Block Scaling

Problem: Scale a sketched structure so that it better fits the
block shapes available.

Another problem that must be solved before the final
structure can be generated, is how to scale the sketched image
such that the blocks within it are closer in size to the “real”
block shapes available. If the input sketch is too small or too
big, then the closest available real block is likely to always
be the same. Without a fixed point of reference between the
input sketch and the desired generated level, this problem has
no perfect solution. We instead propose five different scale
calculation options, the results of which can then be compared
to determine the best approach:

e Scalemay = Max(SBD)/Max(RBD)

o Scalemin = Min(SBD)/Min(RBD)

o Scalemiqa = MidRange(SBD)/MidRange(RBD)

o Scalemean = Mean(SBD)/Mean(RBD)

o Scalemedian = Median(SBD)/Median(RBD)
(SBD = sketched block dimension, RBD = real block
dimension)

In more understandable terms, each scale calculation option
associates one of the rectangle dimensions in the sketch
with one of the real block dimensions available, i.e. us-
ing the Scalen,q, calculation associates the largest rectangle
dimension in our sketch with the largest real block shape
dimension. Using each of these scale options often results in
very distinctive generated structures with different block sizes
and shapes, see Figure 3. These structures can then be ranked
based on their similarity to the original sketch, with further
details on this comparison procedure provided in the Structure
Ranking section.

F. Selecting Block Shapes

Problem: Given a sketched structure with rectangular
blocks of any size / shape, generate a stable and feasible
structure using our available block shapes that is similar in
design to the original sketch.

Having described all the necessary components of our gen-
erator, we are now ready to start generating the final structure.
Given a sketched structure S made of multiple rectangular
blocks, we order the blocks using a bottom-up, depth first
search algorithm (supporters always placed before the blocks
they support). This block ordering (51, Ss,S,,) determines
the order in which we select the block shapes for our final
generated structure G. To generate the ith block for G, we
first select the real block shape Shape; (including composite
block shapes) that is closest to the shape of S; (smallest non-
overlapping region) and which hasn’t already been tried for the
current G definition before. A new block G; with the shape of
Shape; is then added to G in the same horizontal position as
S;, and is vertically placed on top of its supporters determined
by the support graph of S (due to our prior block ordering
these will already have been added to G). Five requirement
checks are then carried out to make sure that G;’s shape and
location are valid:

e Ry: G; doesn’t overlap another block in G.

o Ry: G satisfies all grouping requirements of S (for both
height and shape groupings).

o R3: The support graph of G is consistent with the support
graph of S (all blocks are supporters / supportees of those
that they are supposed to be).

e R4: Create a new structure JF, that contains all blocks
currently in G, as well as any blocks S; in & where
G; is not in G (i.e. blocks already added to G use their
real block shape, blocks that are not yet added to G use
their sketched block shape). Run our previously described
stability test on the structure F, but using the support
graph of §. This stability test must return True (structure
stable).

(Note. even through the support graph of S may not
match the support graph of F, we can still use the support

72 Generating Stable, Building Block Structures from Sketches

Algorithm 2 Selecting Block Shapes

1: GeneratedStructure <)

2: for all Block in SketchedStructure do

3: NewBlock < Block

4: Shape(NewBlock) < Closest BlockShape(Block)
5: add NewBlock to GeneratedStructure

6: Altries, A2tries < 0

7. while any (R1, Rz, R3, R4, R5) not satisfied do

8 if Altries < Altriesmaq. then

9: do adjustment A;

10: else if A2tries < A2triesmq: then
11: do adjustment A,

12: Altries < 0

13: else

14: do adjustment As

15: Altries, A2tries < 0

16: end if

17: end while

18: end for

19: Return GeneratedStructure

graph of S for determining supporters, supportees and
support areas when performing our stability test on JF).

o Rs: If Shape; is a composite block shape, then all blocks
that make up G;’s bottom row must be locally stable.

If any of these requirements (Ri, Ra, R3, Ry, R5) are vi-
olated, then one of three possible adjustment options is per-
formed:

e Ai: Move G; horizontally either left or right by a small

amount.

o Ay Swap Shape; for the next closest block shape that
has not already been tried for the current G definition
before.

o As: Remove both G; and G,_1 from G (i.e. backtracking).

After carrying out an adjustment (Aj, Ay, Ag) the structure
requirements (Rj, Ro, R3, Ry, R5) are re-tested. Adjustment
A; is carried out first, in each direction for several distance
values. Next, adjustment A, is carried out for several different
alternative block shapes. Lastly, if the structure still does not
satisfy our requirements after multiple shape changes and
position shifts, then adjustment Ajg is performed. This process
of selecting block shapes, testing structure requirements and
performing adjustments, repeats recursively until either a final
viable structure that satisfies all requirements is generated
or all block shape combinations have been tested (structure
generation not possible). Algorithm 2 provides a summative
description of this block shape selection method.

G. Structure Ranking

Problem: Compare / rank different generated structures
based on their similarity to the original sketch.

As there are several different scaling options available, as
well as other adjustable generation parameters, many different
structures can usually be generated from the same sketch.
Better results can often be achieved by generating multiple
structures and then comparing them to determine which is best.
This selection can be done manually based on user preference,
but can also be done automatically using a similarity heuristic
which measures how similar the generated structure is to the

original sketch (after polygon splitting but before stability
analysis). Four different measures of error are used in this
heuristic calculation:

e Erroryq;o = Average percentage difference between
each block’s generated and sketched aspect ratios.

e Errorg..q = Average difference between each block’s
generated and sketched areas.

o Errorpesition = Average Euclidean distance between
each block’s generated and sketched locations, relative
to the structure’s centre of mass.

o Errorgqqeq = Weighted sum of the areas of all blocks
added during stability analysis.

o SimilarityHeuristic = —(Error agio * ETTorgmeq *
Errorposition) - Erro")uddcd

(Note. Both the sketched and generated structures are first
scaled so that their total areas equal some arbitrary value).
Note that this similarity heuristic value is not normalised. In
order to normalise this heuristic we would require a worst-case
example to base the similarity value of -1 on, but it is not clear
what a worst possible sketch would look like without setting
some arbitrary bounds on the size and number of blocks for
a generated structure.

A full quantitative test for stability is also conducted and if
a structure is found to be unstable it is immediately rejected,
thus guaranteeing that all generated structures are stable.

III. EVALUATION

In order to evaluate our proposed generation algorithm,
we investigated its ability to create levels for the video
game Angry Birds based on human sketches. As previously
mentioned, this game uses a suitable 2D physics engine and
its levels often consist of one or more structures made from
multiple rectangular blocks, with eight different block shapes
available in the game. All experiments were performed on an
Ubuntu 64-bit desktop PC with an i7-4790 CPU and 16GB
RAM.

A. Experimental Results

1) Stability Analysis Comparison: We first compared the
accuracy of our new qualitative stability analysis method
against the two main state-of-the-art techniques [36], [37].
This was done by generating 1000 random axis-aligned,
rectilinear polygons using the approach described in [40].
Each of these polygons was then divided into rectangles using
our polygon splitting algorithm and the subsequent structures
analysed by all three stability methods. The exact stability of
each generated structure was calculated using the algorithm
described in [35]. Out of the 1000 polygons, 632 were stable
whilst 368 were unstable. Neither our proposed method nor
those previously described gave any false negatives (classified
unstable but actually stable). However, both older methods
each had 44 false positives (classified stable but actually
unstable) whilst ours had only 18. This result indicates that
our proposed stability analysis method performs significantly
better than previous techniques when applied to our problem,
and is able to accurately detect the vast majority of unstable
structures. In all 350 cases where our stability analysis method

§6.2 Paper 73

Level # 1 9 13 16 21
Original —584 | =775 | —23.6 | —27.7 | —67.0
Generated —13.1 | —15.9 | —14.7 | —8.58 | —18.1

TABLE I: Average similarity heuristic values when comparing
human sketches against the original and generated structures.

correctly detected an unstable structure, it was also able to
successfully adjust the structure to make it stable.

2) Similarity Heuristic Verification: We also evaluated our
proposed similarity heuristic to determine whether it provides
a good measure of structural similarity between a sketch and
a generated structure. We recruited 15 participants, 11 male
and 4 female with an average age of 25.1, and asked each to
draw 6 axis-aligned, rectilinear polygons of any design they
liked using a simple pen and paper interface. These drawings
were then scanned and our proposed generator used to create
five different Angry Birds structures for each sketch, using
our five different scaling calculations. These structures were
then ranked by both the user and our similarity heuristic. The
average Spearman’s rank correlation coefficient over all 90
sketches was 0.834, indicating that our heuristic value accu-
rately measures perceived similarities between sketched and
generated structures. Most participants were also extremely
impressed by how accurately their original sketch could be
represented within Angry Birds. The average generation time
for each structure was 7.34 seconds and the average similarity
heuristic value for the closest (best) generated structure was
-21.55.

3) Recreating Original Angry Birds Levels: To evaluate
the overall performance of our entire generator, we investi-
gated its ability to accurately replicate original levels from
Angry Birds, based on human sketches of these same levels.
Five different levels were selected from the “Poached Eggs”
episode, specifically levels 1, 9, 13, 16, and 21, each of which
contains a single complex structure. We collected sketches for
each of these structures from 6 different participants, 4 male
and 2 female with an average age of 22.8, giving a total of
30 structure sketches. Using our proposed similarity heuristic,
we compared each sketch against both its closest generated
structure and the original level it was based on. This allows
us to compare how accurately our generation algorithm can
replicate the sketched structure, compared to how closely the
sketch resembles the original level. The average similarity
value between each sketch and the level generated from it
was -14.08, whilst the average similarity value between each
sketch and the original level it was based on was -50.84. A
breakdown of the average similarity heuristic scores for each
level is displayed in Table 1. From these results we can see that
our generator is able to replicate each sketched structure much
closer than the average user can draw that same level, despite
the fact that generating a structure from a sketch is clearly a
more cognitively demanding task than simply drawing a level.

The correlation coefficient for the similarity values between
each sketch and both its original and generated structures is
0.477, indicating that there is a moderate positive relationship
between these similarity scores for each level. This is probably
because sketches that are further away from the original

level are less likely to fulfil our generation requirements (e.g.
overlapping blocks or unstable). Our generator will attempt
to correct these issues by adjusting the structure, resulting
in a worse similarity heuristic value. Figure 4 provides some
examples from this experiment. The average generation time
for each structure was 6.51 seconds.

When examining these results, please be aware that sim-
ilarity heuristic values are only intended for comparing dif-
ferent generated structures based on the same input sketch to
determine which is the closest, and should not be compared
between different original structures (i.e. the similarity heuris-
tic for a sketch based on a specific structure should not be
compared against the similarity heuristic for a sketch based
on a different structure).

B. Discussion and Future Work

The results of our evaluation demonstrate that our proposed
generator can recreate both new and existing structures based
solely on 2D human sketches, with a level of accuracy often
far closer than a typical user could sketch. The spatial rea-
soning performed by our generator guarantees that all created
structures are both stable and feasible within the required
environment, whilst still ensuring that the users design is
followed closely. Participants in our experiments were able
to use and understand the sketch-based interface easily, even
if they had never previously played Angry Birds. Our method-
ology also possesses a large degree of flexibility, allowing for
the incorporation of new requirements, desirable qualities or
available block shapes when generating structures.

Outside of the obvious application to creating levels for
physics-based games, this work has multiple other uses in a
wide variety of different domains and situations. One example
could be in designing real-world structures that must follow
some environmental and building requirements. Our approach
allows architects or graphical designers to come up with
interesting designs, without having to worry about the physical
and engineering side of the construction process [41]. Another
potential application could be the possibility of a sketch-based
interface for human-robot communication, that would allow
users to intuitively explain how to complete complex physical
tasks such as stacking items. The modularity of our method
also allows specific sections to be improved or removed
without significantly affecting others. Certain components of
our generation process could be integrated with other already
existing sketch-based interfaces for physics simulations, par-
ticularly those focused around cognitive science and education
[15].

Future work for this research would naturally involve ex-
tending the range of possible structures that could be gen-
erated. Improvements to the generator might allow sketches
to contain non-rectangular or angled blocks, and perhaps the
ability to generate full 3D structures using technology such
as stereoscopic displays and haptic interfaces [42]. These
additions would require significant alterations to be made to
both the stability and polygon splitting algorithms, as well
as more advanced computer vision techniques for detecting
multiple block shapes. Another more conceptual improvement

74 Generating Stable, Building Block Structures from Sketches

Jo-
=%

i
)|
[—
0

-

[=—="

=l
=)

—_—

(]

—

c——
(—

| e —

o)

[N B | G—
[p—
gnﬂm
=

QU“:UD o 182

[

\
L L] L L
P N o 1Ly] L 1
mwom | g L I T3
5 Po | B 2 10T 1m
e R s - e an
! =
D./_—_—:D \,ﬁ,:! 0
Ny e | I B |0

3 | - | O O O
O 0Q

0 O 0Of L] :
== %ﬂ DD Oq g
> 0 5| 2 L8 |]

al
o g | 5 >
! N il | N E1 B

¥ e T sas L33
ﬁ.lg%. DE [L% @ .'E-l_ll_*lmlii—.l_ fal it Ll
b MEE | A A ngé%@“ Cs | L P

Fig. 4: The original structure (a), the best and worst human sketches (b)/(d), and the closest generated structures from these
sketches (c)/(e)

Row 1 (level 1): Similarity(b,c) = -6.86, Similarity(b,a) = -14.69, Similarity(d,e) = -22.10, Similarity(d,a) = -92.39
Row 2 (level 9): Similarity(b,c) = -13.30, Similarity(b,a) = -17.62, Similarity(d,e) = -18.56, Similarity(d,a) = -127.35
Row 3 (level 13): Similarity(b,c) = -7.41, Similarity(b,a) = -19.55, Similarity(d,e) = -17.45, Similarity(d,a) = -39.48
Row 4 (level 16): Similarity(b,c) = -4.62, Similarity(b,a) = -16.26, Similarity(d,e) = -11.93, Similarity(d,a) = -64.24
Row 5 (level 21): Similarity(b,c) = -8.24, Similarity(b,a) = -12.35, Similarity(d,e) = -35.01, Similarity(d,a) = -82.79

would be to try and understand what certain users are actually easily, whilst also allowing more experienced designers to
attempting to represent in their sketched structures, rather than rapidly construct prototypes for their ideas. With the huge

directly replicating what they draw. surge in procedural content generation research over the past
few years, it is not only feasible but also essential that more
IV. CONCLUSIONS sophisticated ways to design virtual content are developed. We

are confident that our proposed method represents a significant
step forward in the task of allowing users to easily create
personalised, complex and reliable digital content for physics-
based environments, and presents a substantial contribution to
the field of sketch-based and Al assisted content generation.

In this paper, we have presented an approach to construct
formal structure representations of rough human sketches
using a limited number of rectangular block shapes, that
accurately represents the original inputs while also ensuring
that all physical requirements are satisfied. This combination
of procedural content generation with sketch-based interfaces

can help designers focus on what they want to create at a
[1] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-

higher abstract level, without worrying about the physical .

. d limitati £ th . Thi id based procedural content generation: A taxonomy and survey,” /EEE
reqmrementls an 1I_n1tat10ns of the env1ronmen.t. 1S provides Transactions on Computational Intelligence and Al in Games, vol. 3,
a way for inexperienced users to create their own content no. 3, pp. 172-186, Sept 2011.

REFERENCES

(2]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

§6.2

Paper 75

M. Hendrikx, S. Meijer, J. V. D. Velden, and A. Iosup, “Procedural
content generation for games: A survey,” Trans. Multimedia Comput.
Commun. Appl., vol. 9, no. 1, pp. 1-22, 2013.

S. Snodgrass and S. Ontafién, “Controllable procedural content gen-
eration via constrained multi-dimensional markov chain sampling,” in
Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, ser. ICAT'16. AAAI Press, 2016, pp. 780-786.
N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Generation
in Games: A Textbook and an Overview of Current Research. Springer,
2016.

R. Davis, “Magic Paper: Sketch-understanding research,” Computer,
vol. 40, no. 9, pp. 3441, 2007.

C. Alvarado and R. Davis, “SketchREAD: A multi-domain sketch
recognition engine,” in Proceedings of the 17th Annual ACM Symposium
on User Interface Software and Technology, 2004, pp. 23-32.

T. Hammond and R. Davis, “Tahuti: a geometrical sketch recognition
system for UML class diagrams,” in SIGGRAPH, 2006.

T. Y. Ouyang and R. Davis, “Recognition of hand drawn chemical
diagrams,” in Proceedings of the 22Nd National Conference on Artificial
Intelligence, ser. AAAI’07, 2007, pp. 846-851.

M. Field, S. Valentine, J. Linsey, and T. Hammond, “Sketch recogni-
tion algorithms for comparing complex and unpredictable shapes,” in
Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence, ser. ICAI’11, 2011, pp. 2436-2441.

A. Liapis, G. N. Yannakakis, and J. Togelius, “Sentient Sketchbook:
Computer-aided game level authoring,” in Proceedings of the 8th Con-

ference on the Foundations of Digital Games, 2013, pp. 213-220.

G. Smith, J. Whitehead, and M. Mateas, “Tanagra: A mixed-initiative
level design tool,” in Proceedings of the Fifth International Conference
on the Foundations of Digital Games, ser. FDG ’10, 2010, pp. 209-216.
R. Smelik, T. Tutenel, K. de Kraker, and R. Bidarra, “A declarative
approach to procedural modeling of virtual worlds,” Computers &
Graphics, vol. 35, no. 2, pp. 352 — 363, 2011.

A. Johnston, G. Carneiro, R. Ding, and L. Velho, “3-D modeling from
concept sketches of human characters with minimal user interaction,” in
International Conference on Digital Image Computing: Techniques and
Applications (DICTA), 2015, pp. 1-8.

E. Turquin, M.-P. Cani, and J. F. Hughes, “Sketching garments for virtual
characters,” in SIGGRAPH, 2007.

K. Forbus, J. Usher, A. Lovett, K. Lockwood, and J. Wetzel,
“CogSketch: Sketch understanding for cognitive science research and
for education,” Topics in Cognitive Science, vol. 3, no. 4, pp.
648-666, 2011. [Online]. Available: http://dx.doi.org/10.1111/j.1756-
8765.2011.01149.x

A. Costa and J. Pereira, “SketchyDynamics: A library for the develop-
ment of physics simulation applications with sketch-based interfaces,”
International Journal of Interactive Multimedia and Artificial Intelli-
gence, vol. 2, no. 3, pp. 23-30, 2013.

S. Cheema and J. LaViola, “PhysicsBook: A sketch-based interface
for animating physics diagrams,” in Proceedings of the 2012 ACM
International Conference on Intelligent User Interfaces, ser. IUI 12,
2012, pp. 51-60.

J. Renz, X. Ge, R. Verma, and P. Zhang, “Angry Birds as a challenge
for artificial intelligence,” in Proceedings of the 30th AAAI Conference,
2016, pp. 4338-4339.

M. Stephenson and J. Renz, “Generating varied, stable and solvable
levels for Angry Birds style physics games,” in 2017 IEEE Conference
on Computational Intelligence and Games (CIG), Aug 2017, pp. 288—
295.

L. N. Ferreira and C. Toledo, “Tanager: A generator of feasible and
engaging levels for Angry Birds,” IEEE Transactions on Computational
Intelligence and Al in Games, 2017.

C. R. F. G. Campos, W. de Oliveira Sa, J. M. G. Teixeira, and L. Lelis,
“Mixed-initiative tool to speed up content creation in physics-based
games,” in Proceedings of SBGames 2017, 2017, pp. 590-593.

J. O’Rourke, “Uniqueness of orthogonal connect-the-dots,” Machine
Intelligence and Pattern Recognition, vol. 6, pp. 97-104, 1988.

J. Shi and C. Tomasi, “Good features to track,” in 1994 Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, Jun
1994, pp. 593-600.

A. Wolin, B. Paulson, and T. Hammond, “Sort, merge, repeat: An
algorithm for effectively finding corners in hand-sketched strokes,”
in Proceedings of the 6th Eurographics Symposium on Sketch-Based
Interfaces and Modeling, 2009, pp. 93-99.

G. Costagliola, M. D. Rosa, and V. Fuccella, “Rankfrag: A machine
learning-based technique for finding corners in hand-drawn digital

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41

[42]

curves,” in International Conference on Distributed Multimedia Systems,
2015, pp. 29-38.

M. Shpitalni and H. Lipson, “Classification of sketch strokes and corner
detection using conic sections and adaptive clustering,” vol. 119, 2001.
Y. Xiong and J. J. LaViola, Jr., “Revisiting ShortStraw: Improving
corner finding in sketch-based interfaces,” in Proceedings of the 6th
Eurographics Symposium on Sketch-Based Interfaces and Modeling,
ser. SBIM ’09. New York, NY, USA: ACM, 2009, pp. 101-108.
[Online]. Available: http://doi.acm.org/10.1145/1572741.1572759

S. Durocher and S. Mehrabi, “Computing partitions of rectilinear
polygons with minimum stabbing number,” in Computing and Com-
binatorics, J. Gudmundsson, J. Mestre, and T. Viglas, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 228-239.

J. O’'Rourke and G. Tewari, “The structure of optimal partitions of
orthogonal polygons into fat rectangles,” Computational Geometry,
vol. 28, no. 1, pp. 49 — 71, 2004.

V. S. Anil Kumar and H. Ramesh, “Covering rectilinear polygons with
axis-parallel rectangles,” in Proceedings of the Thirty-first Annual ACM
Symposium on Theory of Computing, ser. STOC *99, 1999, pp. 445-454.
O. Gunther, “Minimum k-partitioning of rectilinear polygons,” Journal
of Symbolic Computation, vol. 9, no. 4, pp. 457 — 483, 1990.

H. Imai and T. Asano, “Efficient algorithms for geometric graph search
problems,” SIAM Journal on Computing, vol. 15, no. 2, pp. 478-494,
1986.

L. Ferrari, P. Sankar, and J. Sklansky, “Minimal rectangular partitions
of digitized blobs,” Computer Vision, Graphics, and Image Processing,
vol. 28, no. 1, pp. 58 — 71, 1984.

P. Zhang and J. Renz, “Qualitative spatial representation and reasoning
in Angry Birds: The extended rectangle algebra,” in Knowledge Repre-
sentation and Reasoning Conference, 2014.

A. G. M. Blum and B. Neumann, “A stability test for configurations of
blocks,” Massachusetts Institute of Technology, Tech. Rep., 1970.

Z. Jia, A. Gallagher, A. Saxena, and T. Chen, “3D-based reasoning with
blocks, support, and stability,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2013.

X. Ge, J. Renz, and P. Zhang, “Visual detection of unknown objects in
video games using qualitative stability analysis,” IEEE Transactions on
Computational Intelligence and Al in Games, vol. 8, no. 2, pp. 166-177,
2016.

E. Huang and R. E. Korf, “New improvements in optimal rectangle
packing,” in Proceedings of the 21st International Jont Conference on
Artifical Intelligence, ser. IJCAT’09, 2009, pp. 511-516.

R. E. Korf, “Optimal rectangle packing: New results.” in Proceedings
of the 14th International Conference on Automated Planning and
Scheduling, 2004, pp. 142-149.

A. P. Tomas and A. L. Bajuelos, “Quadratic-time linear-space algorithms
for generating orthogonal polygons with a given number of vertices,” in
Computational Science and Its Applications — ICCSA, 2004, pp. 117—
126.

J. Michalek, R. Choudhary, and P. Papalambros, “Architectural layout
design optimization,” Engineering Optimization, vol. 34, no. 5, pp. 461—
484, 2002.

P. Onkar and D. Sen, “Controlled direct 3d sketching with haptic and
motion constraints,” International Journal of Computer Aided Engineer-
ing and Technology, vol. 8, p. 33, 01 2016.

76

Generating Stable, Building Block Structures from Sketches

Chapter 7

Creating a Hyper-Agent for Solving
Angry Birds Levels

7.1 Foreword

This paper presents an Angry Birds hyper-agent, which attempts to learn a perfor-
mance model for each sub-agent in its portfolio based on observed level features.
When faced with a previously unseen level, this hyper-agent can use these perfor-
mance models to calculate the expected score for each available sub-agent, and then
select the sub-agent with the best predicted performance to play the level. This pro-
posed framework and methodology essentially allows for the individual strengths
and abilities of multiple Angry Birds agents to be combined, resulting in a greater
overall performance. This hyper-agent was tested and evaluated using the agents
from the 2016 competition, and was able to outperform all of them. Although this is
a fairly basic example, this result certainly indicates the importance and impact that
analysing multiple agents can have on our level solving capabilities. By identify-
ing particular level features that specific agents struggle with, we can gain a greater
understanding of when or why some Al techniques work better than others.

7.2 Paper

M. Stephenson, J. Renz, Creating a Hyper-Agent for Solving Angry Birds Levels,
The Thirteenth Annual AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE’17), Snowbird, UT, October 2017, pp. 234-240.

77

78 Creating a Hyper-Agent for Solving Angry Birds Levels

Creating a Hyper-Agent for Solving Angry Birds Levels

Matthew Stephenson and Jochen Renz
Research School of Computer Science
Australian National University
Canberra, Australia
matthew.stephenson @anu.edu.au, jochen.renz@anu.edu.au

Abstract

Over the past few years the Angry Birds Al competition has
been held in an attempt to develop intelligent agents that can
successfully and efficiently solve levels for the video game
Angry Birds. Many different agents and strategies have been
developed to solve the complex and challenging physical rea-
soning problems associated with such a game. However, the
performance of these various agents is non-transitive and
varies significantly across different levels. No single agent
dominates all situations presented, indicating that different
procedures are better at solving certain levels than others.
We therefore propose the construction of a hyper-agent that
selects from a portfolio of sub-agents whichever it believes
is best at solving any given level. This hyper-agent utilises
key features that can be observed about a level to rank the
available candidate algorithms based on their expected score.
The proposed method exhibits a significant increase in perfor-
mance over the individual sub-agents, and demonstrates the
potential of using such an approach to solve other physics-
based games or problems.

Introduction

The creation of an intelligent agent that can reason and pre-
dict the outcome of actions in a physical simulation environ-
ment, typically with inaccurate information, is a key subject
of investigation in the field of AL It is particularly impor-
tant for the development of such agents to integrate the ar-
eas of computer vision, machine learning, knowledge repre-
sentation and reasoning, planning, and reasoning under un-
certainty. The Angry Birds Al (AIBirds) competition was
created as a means to promote the research and creation of
these agents through the use of the physics-based simulation
game Angry Birds (Renz 2015). This type of physical rea-
soning problem is very different to traditional games as the
attributes and parameters of various objects are often impre-
cise or unknown, meaning that it is very difficult to accu-
rately predict the outcome of any action taken (Renz et al.
2016). Many of the previous agents that have participated
in this competition employ a variety of techniques, includ-
ing qualitative reasoning (Waga, Zawidzki, and Lechowski
2016), internal simulation analysis (Polceanu and Buche
2013; Schiffer, Jourenko, and Lakemeyer 2016), logic pro-
gramming (Calimeri et al. 2016), heuristics (Dasgupta et al.

Copyright (©) 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2016), Bayesian inferences (Tziortziotis, Papagiannis, and
Blekas 2016; Narayan-Chen, Xu, and Shavlik 2013), and
structural analysis (Zhang and Renz 2014). However, none
of these agents has ever come close to being the dominant
performer across all levels (AIBirds 2017), indicating that
these methods are best suited to specific situations.

The fact that different agents perform better at differ-
ent levels suggests that the construction of a “hyper-agent”
(a.k.a. portfolio agent or ensemble agent), which selects
from a portfolio of various sub-agents, would be able to
utilise the combined strengths of their techniques (Mendes,
Togelius, and Nealen 2016). This is an idea that has been
suggested previously under the terms hyper-heuristic (Burke
et al. 2013; 2010) and algorithm selection (Kotthoff 2014).
The hyper-agent proposed in this paper uses a set of train-
ing levels to acquire information about how particular fea-
tures of a level relate to each sub-agent’s performance.
A prediction model is then created that allows the hyper-
agent to determine which sub-agent(s) would likely be
the most successful for any unknown levels it encounters
(i.e. an offline learning approach). Hyper-agents have been
proposed previously for domains such as task scheduling
(Cowling, Kendall, and Soubeiga 2001), packing problems
(Lopez-Camacho et al. 2014) and examination timetabling
(Burke et al. 2012), as well as for multiple video game
genres including strategy games (Li and Kendall 2017),
card games (Elyasaf, Hauptman, and Sipper 2012), puz-
zle games (Salcedo-Sanz et al. 2014) and General Video
Games (GVGAI) (Bontrager et al. 2016; Horn et al. 2016;
Mendes, Togelius, and Nealen 2016).

Whilst some of the agents that have previously partici-
pated in the AIBirds competition have utilised various sim-
ple strategies based on level properties before, none have
yet combined different fields of AI based on higher level
features. Some of these approaches are faster, whilst oth-
ers may be more consistent, or adaptable to new scenarios.
Physical simulation games such as Angry Birds provide a
large and varied range of creative and challenging levels that
cannot yet be solved by a single Al technique, despite the
fact that people and even children are able to solve most of
these levels relatively quickly and easily (Renz et al. 2015).
Combining these techniques therefore seems to be the most
effective and promising means of developing a successful
Al agent for both Angry Birds and other real-world physics
problems.

§7.2 Paper 79

Figure 1: Screenshot of a level from the Angry Birds game.

Background

Angry Birds Game

Angry Birds is a popular physics-based puzzle game in
which the player uses a slingshot to shoot birds at pigs, with
structures composed of blocks and other physical objects
protecting them, see Figure 1. The goal of each level is to
kill all pigs using a set number of birds provided. All objects
within the level have properties such as location, size, mass,
friction, density, etc., and obey simplified physics principles
defined within the game’s engine. Blocks are also made of
one of three materials, wood, stone or ice. Different bird
types are available with different properties, and pigs are
killed once they take enough damage from either the birds
directly or by being hit with another object. The player can
choose the angle and speed with which to fire a bird from the
slingshot, as well as a tap time for when to activate the bird’s
special ability if it has one, but cannot alter the ordering of
the birds or affect the level in any other way. The difficulty of
this game comes from predicting the physical consequences
of actions taken, and accurately planning a sequence of shots
that will result in success. Points are awarded to the player
once the level is solved based on the number of birds re-
maining and the total amount of damage caused.

AlIBirds Competition

In this competition, agents are tasked with playing a set
number of unknown Angry Birds levels within a given time,
attempting to score as many points as possible in each level.
The exact location and parameters of certain objects, as well
as the current internal state of the game, are not directly ac-
cessible. Instead, information about the level is provided us-
ing a computer vision module, effectively meaning that an
agent gets exactly that same input as a human player. Agents
are required to solve these levels in real-time and can at-
tempt levels in any order and as many times as they like.
Once the time limit has expired the maximum scores that
an agent achieved for each level are summed up to give its
final score. Agents are then ranked based on this value and
after several rounds of elimination a winner is declared. The
eventual goal of this competition is to design Al agents that
can play new levels as well as or better than human players.

Agent Discussion

Our proposed hyper-agent selects from a portfolio consist-
ing of the eight agents that participated in the 2016 AIBirds
competition. Whilst there have been over 30 different agents

that have participated in the AIBirds competition over the
years, the agents from the latest competition represent the
best that are currently available. A brief description of each
of these agents is given below, with full details available on
the AlIBirds website (AIBirds 2017).

2016 Competition Past Agents

Naive Agent The Naive agent is provided to all competi-
tion entrants as a useful starting point upon which to create
their own Al agent. It fires the currently selected bird at a
randomly chosen pig using either a low or high trajectory
(also chosen at random). No other objects apart from the
current bird and pigs are used when determining a suitable
shot, and tap times are fixed for each bird based on the total
length of its trajectory. It can therefore make shot calcula-
tions quickly and accurately but is by far the least sophisti-
cated of the agents.

Datalab Agent The Datalab agent uses a combination of
four different strategies when attempting to solve a level.
These can be described as the destroy pigs, building, dy-
namite and round blocks strategies. The decision of which
strategy to use is based on the environment, possible trajec-
tories, currently selected bird and remaining birds. The de-
stroy pigs strategy attempts to find a trajectory that intersects
with as many pigs as possible. The building strategy identi-
fies groups of connected blocks that either protect pigs or are
near to them. The decision of which blocks within the build-
ing are suitable targets is based on its location, size, shape,
material and relative placement within the structure, as well
as the shape of the building itself. The shot that will cause
the most damage to the building is then selected. The dy-
namite strategy ranks each TNT box within the level based
on the number of pigs, stone blocks and other TNT boxes
that are nearby. The round blocks strategy attempts to either
hit round blocks directly or else destroy objects that are sup-
porting round blocks.

IHSEV Agent The IHSEV agent creates an internal
Box2D simulation of the level, within which it tries out
many shot angles and tap times. These mental simulations
are carried out in parallel to identify the shot that destroys
the most pigs. The simulation is not a perfect representation
of the environment and great care is taken when perceiving
and reconstructing each level. The vision module has also
been slightly improved from the base code provided so that
objects are more robustly identified. The agent does not use
any information about the number or type of remaining birds
when deciding which shot to take. A future plan to adapt the
agent’s environmental simulation based on the deviation be-
tween the actual and expected outcome of a shot was pro-
posed but has not yet been implemented.

Angry-HEX Agent The Angry-HEX agent uses HEX
programs to deal with decisions and reasoning, while the
computations are performed by traditional programming.
HEX programs are an extension of answer set programming
(ASP) which use declarative knowledge bases for informa-
tion representation and reasoning. The Reasoner module of
this agent determines several possible shots based on differ-
ent strategies. These shots are then simulated using an inter-
nal Box2D simulation, with the shot that kills the most pigs

80 Creating a Hyper-Agent for Solving Angry Birds Levels

being selected as the ideal action. If the estimated number of
killed pigs is the same for multiple possible shots then shot
that also destroys the most objects is selected. The agent also
remembers the moves it performs and does not perform them
again on subsequent level attempts. The trajectory module
of the base program was improved to take the thickness of
the currently selected bird into account, as well as the abil-
ity to select several different points on a block as the target
location.

Eagle’s Wing Agent The Eagle’s Wing agent chooses
from five different strategies when deciding what shot to per-
form. These are defined as the pigshooter, TNT, most blocks,
high round objects and bottom building blocks strategies.
The decision of which strategy to use is based on the esti-
mated utility of each approach with the currently selected
bird. This utility is calculated based on the level’s features
and how these compare to a small collection of practice lev-
els that are used to train the agent. The pigshooter strategy
attempts to find a trajectory that either targets an unprotected
pig, or includes multiple pigs within it. The TNT strategy
aims for any TNT box that can cause significant damage to
a large region. The many blocks strategy finds the trajectory
that destroys the most blocks (highly dependent on the type
of bird being used). The high round objects strategy attempts
to destroy objects close to large round objects that are high
above the ground, hopefully causing them to fall onto pigs.
The bottom building block strategy targets blocks that are
important to a structure’s overall stability.

SEABirds Agent The SEABirds agent uses an Analytic
Hierarchy Process (AHP) for deciding which shots to make,
and determines the best object or structure to hit based on
five different criteria. This includes the Y-axis position, sur-
rounding objects/structures, breakability (for currently se-
lected bird type), relative distance to pigs and whether the
object is a TNT box. The relative importance of each cri-
teria compared to the other alternative options is calculated
using a collection of training levels.

s-birds Agent The s-birds agent has two different ap-
proaches for determining the most effective shot to per-
form. The first strategy is called the bottom-up approach
and identifies a set of candidate target blocks for the level
based on the potential number of affected pigs. The sec-
ond strategy is called the top-down approach and utilizes the
crushing/rolling effect of a bird or round block onto pigs, as
well as the toppling effect of thinner blocks. Suitable target
blocks are identified for each method and are then ranked
based on the expected number of pigs killed and the likeli-
hood of the shot’s success. The penetration factor of specific
bird types against certain materials is also considered when
determining if a block can be hit.

Bambirds Agent The Bambirds agent creates a qualita-
tive representation of the level and then chooses one of nine
different strategies based on its current state. This includes
approaches such as utilizing blocks within the level to cre-
ate a domino effect, targeting blocks that support heavy ob-
jects, maximum structure penetration and prioritizing pro-
tective blocks, as well as simpler options such as targeting
pigs/TNT or utilizing certain bird’s special abilities. These
strategies are each given a score based on their estimated

damage potential for the current bird type. A strategy is then
chosen randomly, with this score being used to determine
the likelihood of selection (i.e. shots that are believed to be
the most effective are more likely to be chosen).

Meta Strategies

Whilst the techniques each agent uses for solving a level
have been discussed, many agents also feature a variety of
different strategies for determining which levels are to be
played. The time given to each agent in the AIBirds com-
petition is typically high enough that it can attempt each
level multiple times. Some agents choose to attempt all lev-
els once before replaying any unsolved levels (such as Data-
lab and Eagle’s Wing) whilst others attempt a level multi-
ple times before moving on (such as s-birds and SEABirds).
Angry-HEX and Bambirds are also able to remember the
shots and strategies previously carried out, to aid them when
re-attempting levels later on. Whilst most agents try to solve
all levels before re-attempting those already solved, Bam-
birds calculates a probability of attempting each level based
on an estimated number of points for solving it, the num-
ber of times it has been played and the current score for that
level. For our hyper-agent we will use the following simple
meta-strategy. All levels are to be attempted at least once,
after which all still unsolved levels are repeatedly played
again. If all levels are solved then we simply cycle through
all the available levels.

Methodology

This section provides an overview of the methods used to
create the proposed hyper-agent. This involves both the col-
lection of important level features which can be used to cre-
ate models for predicting each agent’s score, as well as how
the hyper-agent uses these score prediction models to choose
a sub-agent from its available portfolio when attempting to
solve an unknown level.

Feature Collection

Identifying features of a level that influence agent perfor-
mance is one of the most important aspects in the creation
of a hyper-agent. For this type of game, the two factors that
make up an agent’s performance are the score it achieves for
a level and how long it took it to achieve that score. After
analysing the strategies and approaches of our sub-agents
we defined a list of 24 different numerical properties of a
level which we believe may influence the performance of
certain agents, see Table 1. These include basic level fea-
tures such as the number and type of different birds or blocks
within the level, as well as more complex attributes such as
the number of block connections or the overall dispersion
of pig locations. The values for each of these properties are
calculated using the information provided by the competi-
tion software’s computer vision module. These values may
therefore be subject to noise or other imperfections which
will affect the reliability of the information perceived. How-
ever, this is the same error that an agent would have to face
whilst playing unknown levels in real time. The first time the
proposed hyper-agent plays a level it will first calculate the
values for each of these features, after which it will select an
appropriate sub-agent from its portfolio. The time required

Table 1: Selected level features to model agent performance

to calculate these features is very short, taking less than a
few seconds after the level has loaded.

Agent Selection

Using the collected features of certain levels, along with
each agent’s average score at those same levels, we can con-
struct machine learning models to predict each agent’s score
for an unknown level based on its features. Our hyper-agent
can then use these models to calculate an expected score
for each sub-agent in its portfolio. This enables us to rank
the agents based on their expected performance. Each time
the hyper-agent attempts a level it will choose the highest
ranked agent that has not already been tried. If all agents
have played a level then we repeat this selection process,
starting again from the highest ranked agent.

Experiments and Results

In order to fully create and test our hyper-agent we require
three distinct steps. First, we need to use a set of training
levels to evaluate each sub-agent’s performance based on
the features within those levels. Second, we need to use this
performance information to construct score prediction mod-
els for each sub-agent that can be used on unknown levels.
Third, we will use a new set of testing levels to compare the
performance of our hyper-agent against that of each of the
original sub-agents.

A total of 105 levels are available from the “Poached
Eggs” and “Mighty Hoax” episodes of the original Angry

§7.2 Paper 81

Feature Description Agent Average Score Average Shot Time

#Pigs Number of pigs Naive 17570 31.74

#Wood Number of wood blocks Datalab 37557 19.82

#Stone Number of stone blocks IHSEV 24402 31.86

#lce Number of ice blocks Angry-HEX 21253 24.19

AreaWood Total area of wood blocks Eagle’s Wing | 36468 20.95

AreaStone Total area of stone blocks SEABirds 29978 35.01

Arealce Total area of ice blocks s-birds 19628 55.64

#RedBirds Number of red birds Bambirds 23960 28.27

#BlueBirds Number of blue birds

#YellowBirds Number of yellow birds Table 2: Agent performance on training levels

#BlackBirds Number of black birds

#WhiteBirds Number of white birds

#TNT Number of TNT boxes

#Round Number of round blocks Birds game. Other levels from different Angry Birds games

AreaTerrain Total area of static terrain or episodes feature objects that are not detectable by the vi-

#BelowRound Number of pigs below round blocks sion module and are thus not usable by any of the Angry

#Blocked Number of pigs that have terrain block- Birds agents which are currently available. Of these 105 lev-
ing the player’s shot trajectory to them 1 found that six of them caused issues with the vision

#Reachable Number of pigs that can be hit directly els we toun . . . L. .
by the player (no protection) module,_preventmg certain key objects frpm being 1deqt1-

FOutOTRange Number of pigs beyond the range of the ﬁeq. This rf:duced the total number of viable levels with
player’s shots which to train our hyper-agent to 99. We also have a collec-

LevelWidih Width of the level tion of 80 new levels that were featured in the three previous

LevelHeight Height of the level AlBirds competitions. These were not used in the training

PigDispersion Overall dispersion of pig locations, process but were instead used to test the hyper-agent and
calcuated using method proposed in evaluate its performance. The experiments conducted were
(Stephenson and Renz 2016a) all carried out on an Ubuntu(16.04) 64-bit desktop PC with

AvgAspectRatio Average aspect ratio of all blocks an 17-4790 CPU and 16GB RAM.

#BlockConnections | Number of edges where blocks touch

Agent Performance

Using our collection of 99 training levels, we tasked each
sub-agent with solving a level with the highest score pos-
sible within ten minutes. As some agents use their past at-
tempts to tailor their future ones, we treated each new at-
tempt like a brand-new level. This process was repeated
five times, to give five rounds of ten minutes, within which
each agent attempted to score as many points as possible.
The maximum score from each round was recorded for each
agent and the average of these scores across all rounds gave
the agent’s final score for that level. This process was fol-
lowed so as to better suit each agent’s overall performance
in the AIBirds competition environment, where an agent is
given a fixed amount of time to solve a collection of levels
rather than a set number of attempts.

The average score for each agent across all levels, along
with the average time in seconds that each agent took to
make a single shot, is provided in Table 2. Out of the 99
levels used, only five of them could not be successfully com-
pleted by any agent, giving us a total of 94 completed lev-
els with which to build our score prediction models. From
this information we can see a large disparity in the aver-
age scores of the best agent (Datalab) and the worst agent
(Naive) of almost 20,000 points, but also that there is a rea-
sonably gradual increase from the worst to best agent, with
the jumps in agent’s scores never being greater than 6500
points. There is also a moderate negative correlation (coef-
ficient of -0.458) between the average score and shot time
for each agent, indicating that having a faster shot time typ-
ically leads to a greater overall score, which is likely due to
the increased number of level attempts this results in.

82 Creating a Hyper-Agent for Solving Angry Birds Levels

Prediction Model Comparison

Using the agent scores from the training levels, along with
the features recorded using the computer vision module,
we can create a score prediction model for each agent.
However, this prediction model could be created with one
of multiple machine learning techniques. The Weka ma-
chine learning software (Hall et al. 2009) provides several
ready-made algorithms for this purpose. Possible popular
options include using Linear Regressions, Multi-Layer Per-
ceptrons (MLP), Support Vector Machines (SMOreg), k-
Nearest Neighbours (IBk), Random Trees, Random Forests,
and M5 Trees (M5P). Each of these methods can be used
to create a regression model to predict an agent’s expected
score for an unknown level. However, the accuracy of the
models created by each technique differs from agent to
agent, making choosing the right model for each agent ex-
tremely important.

In order to compare the models created by each method
for each agent, we performed 10-fold cross validation on
each model. The mean absolute error for each model was
recorded, allowing us to determine the best score predic-
tion model for each agent. The results of this analysis can be
seen in Table 3, with the lowest error values for each agent
given in bold (Note. the results for MLP, M5P and Random
trees were excluded to save space). From this we can see that
Random Forests and k-Nearest Neighbours (k=5) are best at
representing three agents each, while Linear regression and
SMOreg best model one agent each. MLP, M5P and Ran-
dom Trees did not best represent any agents. The best per-
forming model for each agent was selected to be used on
unknown levels. Comparing these errors against the average
scores acheived by each agent gives a mean error of 72.1%
over all eight methods. Whilst this may seem like a fairly low
signal-to-noise ratio the mean error for simply predicting the
average performance of each agent (ZeroR) is 88.5%, indi-
cating that there is an extremely large amount of variation in
agent scores between levels.

Hyper-Agent Analysis

Using the agent selection method previously described, we
are now able to create a hyper-agent to play unknown levels
of Angry Birds. Using the 80 levels featured in the past three
years of AIBirds competitions, we can compare our new
hyper-agent against the eight original agents which make up
its portfolio. Using the same rules as in the AIBirds compe-
tition, each agent is tasked with playing a collection of eight
levels in 30 minutes (one round of the competition) with the
combined maximum score achieved for each level making
up an agent’s total score for that round. After playing all ten
rounds of eight levels, we can then compare each agent’s
overall performance, see Table 4.

From this we can see our hyper-agent performed better
overall than any other single agent, both in terms of score
and the number of levels solved. Out of the ten rounds
played, our hyper-agent came first in seven of them, with
it coming second in the other three to SEABirds in the qual-
ification round, Datalab in the 2014 semi-finals round and
IHSEYV in the 2016 quarter-finals round. Using these scores,
we can determine that had our hyper-agent competed against
these agents in the last three AIBirds competitions, and per-

Agent Linear SMOreg | Random | IBk
Regr Forest (k=5)
Naive 16360 16450 16969 16414
Datalab 19700 21925 18838 20995
IHSEV 20251 19225 19763 18135

Angry-HEX | 21216 22060 22060 18921
Eagle’s Wing | 20548 20384 18472 19761
SEABirds 27594 28508 21842 22012
s-birds 17529 17191 18682 18174
Bambirds 15407 15917 14201 14083

Table 3: Mean absolute error for score prediction models

formed the same as in these tests, then it would have won all
of the competitions from those years.

The distributions of each agent’s scores were also com-
pared by performing a Mann-Whitney-Wilcoxon (MWW)
test, in order to determine whether or not the hyper-agent’s
performance statistically differs from that of the other agents
(Fay and Proschann 2010). The bottom row of Table 4 shows
the P-values for each sub-agent’s score distributions when
compared against the hyper-agent. Using a p-value of less
than 0.05 as a marker for significance, this test demonstrates
that for all agents, with the exception of Datalab, we can re-
ject the null hypothesis that the difference in these scores is
due to random sampling.

To ensure that this improved score was not simply due
to the increased number of different agents attempting each
level, we also ran two naive hyper-agents on the competition
levels. The first naive hyper-agent selects a sub-agent based
only on the average performance of each agent from the
training levels (does not observe anything about the level’s
features), whilst the second randomly selects one of the
eight available agents each time it attempts a level. These
naive hyper-agents gave total level scores of 3783850 and
3176200 respectively. We also tried the randomly selecting
hyper-agent again, but this time with only the top four agents
(Datalab, Eagle’s Wing, SEABirds and IHSEV) being used
in the selection pool. Whilst this increased its total score to
3697150, its performance is still well below that of our pro-
posed hyper-agent.

Discussion

The proposed hyper-agent uses an assortment of score pre-
diction models to rank the sub-agents available in its port-
folio based on a given level’s features. These models were
created using one of several possible machine learning tech-
niques, with different techniques being used to create mod-
els for different sub-agents. The use of different model de-
signs makes it difficult to directly compare which features
most affected each sub-agent’s performance, and in addition,
the sheer number of features makes for an extremely detailed
and complex comparison. Nevertheless, we will briefly men-
tion some noticeable points of interest.

Whilst the effects of many of the more common and fluc-
tuating level properties, such as the number/area of certain
block materials and the level’s width/height, varied greatly
from agent to agent in terms of importance, there were sev-
eral features that seemed to be universally good or bad for
most agents. For example, #BlackBirds had a very positive

§7.2 Paper 83

Round Naive Datalab IHSEV Angry- Eagle’s SEABirds | s-birds Bambirds | Hyper
HEX Wing
Qualification | 251360 349640 195350 237420 384370 397810 272670 397600
Quarter 2014 309920 282110 319730 227400 332270
Semi 2014 400980 586120 439520 402270 442800 453730 383380 524400
Final 2014 209130 243160 257410 250970 338330
Quarter 2015 286450 229090 346760 351300
Semi 2015 300330 299220 282600 375670
Final 2015 440680 458030 462600 191970 383750 337970 417460 483610
Quarter 2016 | 251080 327490 444560 231300 252100 328570 280930 336840
Semi 2016 436870 371100 562820 475840 420170 293410 190840 406200 610280
Final 2016 390050 415320 288720 347960 421790 385740 356050 426980 469960
Total Score 2472240 | 3630210 | 3086870 | 2716430 3292260 2998510 1817070 | 2746700 4220260
Levels Solved | 37 59 52 38 52 49 27 42 69
MWW Score | 0.0001 0.2627 0.0091 0.0014 0.0477 0.0067 0.0000 0.0008 N/A

Table 4: Agent performance on AIBirds competition levels

affect on the predicted score for all eight agents, likely due
to the large amount of damage this bird type causes and their
simplicity of use. Additional factors such as AvgAspectRa-
tio also had a large positive affect on most of the higher
ranked agents, whilst PigDispersion and PigsBlocked had a
strong negative effect on the lower ranked agents. The only
feature that greatly affected most agents predicted scores
but in opposite directions was #WhiteBirds, which had a
positive effect on the Datalab, SEABirds and Eagle’s Wing
agents, but a negative effect on all the others. This is likely
due to the fact that using the white bird effectively is very
difficult, so less skilled agents cannot usually complete lev-
els that contain them and so receive zero points.

Whilst the proposed hyper-agent performs better than
each of the individual sub-agents, it still has several limi-
tations that could be addressed to improve its performance
further. The main benefit of the proposed hyper-agent is its
ability to use the multiple Al techniques employed by its
portfolio of agents. However, some of these agents are more
similar in their approach than others. It may be possible that
there are correlations between certain sub-agents and the
levels which they can solve, meaning that levels which can-
not be solved by one of these agents would also probably
not be solved by the other. Taking this into account could al-
low us to update each agent’s expected score based on which
agents have already attempted the level.

Another improvement that could increase the hyper-
agent’s overall performance would be to design a more com-
plex meta-strategy, which uses the predicted score of each
agent to identify the levels that will net the most points if
solved. Resetting a level halfway through an attempt to try
another agent, if the hyper-agent believes that the current
agent can no longer solve the level, may also be an interest-
ing topic of investigation. A greater understanding of why
certain sub-agents perform better at certain levels would also
help create better score prediction models.

Increasing the number of levels that are available for train-
ing the hyper-agent would naturally increase the accuracy of
its predictions. Whilst there are a reasonably large number of
Angry Birds levels available, most of them contain objects
that are not yet incorporated into the AIBirds competition
framework, and are thus not recognised by any of the cur-

rent agents. A possible solution to this problem would be to
utilise a level generator to create new levels with which to
train our hyper-agent. Several Angry Birds level generators
have been proposed previously (Ferreira and Toledo 2014;
Stephenson and Renz 2016b; Pereira et al. 2016) and pro-
vide the potential to build much more accurate models. We
could also utilise algorithms that can identify new Angry
Birds objects (Ge, Renz, and Zhang 2016).

Conclusion

This paper has presented an approach to creating a hyper-
agent for Angry Birds that selects from a portfolio of other
prior agents. Using a set of training levels, we were able to
extract features that may be deemed relevant to an agent’s
overall performance and use this to train a set of regres-
sion models which predict each sub-agent’s expected score.
When confronted with an unknown level we can use these
score prediction models, along with the level’s features, to
rank each of the available sub-agents. Our proposed hyper-
agent can then use this ranking to determine the order in
which to use the sub-agents available.

Comparing the scores of our hyper-agent against its in-
dividual constituent agents, for the levels used for that past
three AIBirds competitions, revealed that it performed con-
siderably better than all of them. This encouraging result
demonstrates the potential of hyper-agents which utilise
multiple Al techniques, not just for Angry Birds but for
physics-based problems in general. We have also discussed
many possible areas for improvement, which may further in-
crease the performance of our hyper-agent.

In the future, we aim to not only increase the abilities of
the current hyper-agent but to also further explore the do-
mains in which our methods could be applied. As an exam-
ple, the general video game AI competition (GVGAI) has
recently revealed a collection of physics-based games which
it intends to add to its current line-up. This is a promising
new area within which to create a hyper-agent and would
pose many interesting challenges and opportunities for fur-
ther research. Additional areas of Al such as content gener-
ation are also possible applications, where score prediction
models from hyper-agents could be used to help estimate the
difficulty of a generated level.

84 Creating a Hyper-Agent for Solving Angry Birds Levels

References

AlBirds. 2017. AIBirds homepage. https://aibirds.
org. Accessed: 2017-04-21.

Bontrager, P.; Khalifa, A.; Mendes, A.; and Togelius, J.
2016. Matching games and algorithms for general video
game playing. In AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, 122128.

Burke, E. K.; Hyde, M.; Kendall, G.; Ochoa, G.; Ozcan,
E.; and Woodward, J. R. 2010. A Classification of Hyper-
heuristic Approaches. Boston, MA: Springer US. 449-468.

Burke, E. K.; Kendall, G.; Misir, M.; and Ozcan, E. 2012.
Monte Carlo hyper-heuristics for examination timetabling.
Annals of Operations Research 196(1):73-90.

Burke, E. K.; Gendreau, M.; Hyde, M.; Kendall, G.; Ochoa,
G.; Ozcan, E.; and Qu, R. 2013. Hyper-heuristics: a survey
of the state of the art. Journal of the Operational Research
Society 64(12):1695-1724.

Calimeri, F.; Fink, M.; Germano, S.; Humenberger, A.;
Tanni, G.; Redl, C.; Stepanova, D.; Tucci, A.; and Wimmer,
A. 2016. Angry-HEX: An artificial player for Angry Birds
based on declarative knowledge bases. IEEE Transactions
on Computational Intelligence and Al in Games 8(2):128—
139.

Cowling, P.; Kendall, G.; and Soubeiga, E. 2001. A Hyper-
heuristic Approach to Scheduling a Sales Summit. Berlin,
Heidelberg: Springer Berlin Heidelberg. 176-190.

Dasgupta, S.; Vaghela, S.; Modi, V.; and Kanakia, H. 2016.
s-Birds Avengers: A dynamic heuristic engine-based agent
for the Angry Birds problem. IEEE Transactions on Com-
putational Intelligence and Al in Games 8(2):140-151.

Elyasaf, A.; Hauptman, A.; and Sipper, M. 2012. Evolu-
tionary design of FreeCell solvers. IEEE Transactions on
Computational Intelligence and Al in Games 4(4):270-281.

Fay, M. P.,, and Proschann, M. A. 2010. WilcoxonMan-
nWhitney or t-test? on assumptions for hypothesis tests and
multiple interpretations of decision rules. Statistics Surveys
4:1-39.

Ferreira, L., and Toledo, C. 2014. A search-based approach
for generating Angry Birds levels. In Computational Intelli-
gence and Games (CIG), 2014 IEEE Conference on, 1-8.

Ge, X.; Renz, J.; and Zhang, P. 2016. Visual detection of
unknown objects in video games using qualitative stability
analysis. IEEE Transactions on Computational Intelligence
and Al in Games 8(2):166-177.

Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. H. 2009. The WEKA data mining software:
An update. SIGKDD Explor. Newsl. 11(1):10-18.

Horn, H.; Volz, V.; Pérez-Liébana, D.; and Preuss, M. 2016.
MCTS/EA hybrid GVGALI players and game difficulty esti-
mation. In 2016 IEEE Conference on Computational Intel-
ligence and Games (CIG), 1-8.

Kotthoff, L. 2014. Algorithm selection for combinatorial
search problems: A survey. Al Magazine 35(3):48-60.

Li, J., and Kendall, G. 2017. A hyperheuristic methodology
to generate adaptive strategies for games. IEEE Transactions
on Computational Intelligence and Al in Games 9(1):1-10.

Lépez-Camacho, E.; Terashima-Marin, H.; Ross, P.; and
Ochoa, G. 2014. A unified hyper-heuristic framework for
solving bin packing problems. Expert Systems with Appli-
cations 41(15):6876 — 6889.

Mendes, A.; Togelius, J.; and Nealen, A. 2016. Hyper-
heuristic general video game playing. In 2016 IEEE Confer-
ence on Computational Intelligence and Games (CIG), 1-8.

Narayan-Chen, A.; Xu, L.; and Shavlik, J. 2013. An em-
pirical evaluation of machine learning approaches for Angry
Birds. In 1IJCAI Symposium on Al in Angry Birds.

Pereira, L. T.; Toledo, C.; Ferreira, L. N.; and Lelis, L. H. S.
2016. Learning to speed up evolutionary content generation
in physics-based puzzle games. In 2016 IEEE 28th Interna-
tional Conference on Tools with Artificial Intelligence (IC-
TAI), 901-907.

Polceanu, M., and Buche, C. 2013. Towards a theory-of-
mind-inspired generic decision-making framework. In 1J-
CAI Symposium on Al in Angry Birds.

Renz, J.; Ge, X.; Gould, S.; and Zhang, P. 2015. The Angry
Birds Al competition. Al Magazine 36(2):85-87.

Renz, J.; Ge, X.; Verma, R.; and Zhang, P. 2016. Angry
Birds as a challenge for artificial intelligence. In AAAI Con-
Jerence on Artificial Intelligence, 4338—4339.

Renz, J. 2015. AIBIRDS: The Angry Birds artificial intelli-
gence competition. In AAAI Conference on Artificial Intelli-
gence, 4326-4327.

Salcedo-Sanz, S.; Matias-Roman, J. M.; Jiménez-
Ferndndez, S.; Portilla-Figueras, A.; and Cuadra, L.
2014. An evolutionary-based hyper-heuristic approach for
the Jawbreaker puzzle. Applied Intelligence 40(3):404—414.

Schiffer, S.; Jourenko, M.; and Lakemeyer, G. 2016. Ak-
baba: An agent for the Angry Birds Al challenge based on
search and simulation. [EEE Transactions on Computa-
tional Intelligence and Al in Games 8(2):116-127.

Stephenson, M., and Renz, J. 2016a. Procedural generation
of complex stable structures for Angry Birds levels. In 2016
IEEE Conference on Computational Intelligence and Games
(CIG), 1-8.

Stephenson, M., and Renz, J. 2016b. Procedural generation
of levels for Angry Birds style physics games. In Twelfth
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE-16), 225-231.

Tziortziotis, N.; Papagiannis, G.; and Blekas, K. 2016.
A bayesian ensemble regression framework on the Angry
Birds game. IEEE Transactions on Computational Intelli-
gence and Al in Games 8(2):104-115.

Waga, P. A.; Zawidzki, M.; and Lechowski, T. 2016. Qual-
itative physics in Angry Birds. IEEE Transactions on Com-
putational Intelligence and Al in Games 8(2):152—165.

Zhang, P., and Renz, J. 2014. Qualitative spatial represen-
tation and reasoning in Angry Birds: The extended rectan-
gle algebra. In Proceedings of the Fourteenth International
Conference on Principles of Knowledge Representation and
Reasoning, KR’14, 378-387.

Chapter 8

Deceptive Angry Birds: Towards
Smarter Game-Playing Agents

8.1 Foreword

This paper presents an analysis of the more conceptual level aspects within Angry
Birds, which can deceive or trick agents into making poor decisions by exploiting
limitations with the AI techniques they use. While our previous paper on mod-
elling agent performance based on simple level features was certainly successful,
it is clear that what makes a particular level challenging or enjoyable goes much
deeper than this. Due to the wide range of Al techniques employed by different An-
gry Birds agents, it is important to try and understand what kinds of levels certain
agents struggle with. By comparing the strengths and weakness of different agents
on carefully designed levels that require human-like creative reasoning to solve, we
can identify general areas where agents could improve most in the future (i.e. the
same benefits as with our hyper-agent performance analysis, but applied to a much
broader and more conceptual range of level properties).

8.2 Paper

M. Stephenson, J. Renz, Deceptive Angry Birds: Towards Smarter Game-Playing
Agents, The Twelfth International Conference on the Foundations of Digital Games (FDG’18),
Malmo, Sweden, August 2018, pp. 13:1-13:10, (honourable mention).

85

86 Deceptive Angry Birds: Towards Smarter Game-Playing Agents

Deceptive Angry Birds: Towards Smarter Game-Playing Agents

Matthew Stephenson
Research School of Computer Science
Australian National University
Canberra, Australia
matthew.stephenson@anu.edu.au

ABSTRACT

Over the past few years the Angry Birds Al competition has been
held in an attempt to develop intelligent agents that can successfully
and efficiently solve levels for the video game Angry Birds. Many
different agents and strategies have been proposed to solve the
complex and challenging physical reasoning problems associated
with such a game. The performance of these agents has increased
significantly over the competition’s lifetime thanks to the different
approaches and improved techniques employed. However, there
still exist key flaws within the designs of these agents that can often
lead them to make illogical or very poor choices. Most of the current
approaches try to identify the best or a good next shot, but do not
attempt to plan an effective sequence of shots. While this might be
due to the difficulty in predicting the exact outcome of a shot, this
capability is precisely what is needed to succeed, both in games like
Angry Birds, but also in the real world where physical reasoning
capabilities are essential. In order to encourage development of
such techniques, we can create levels where selecting a seemingly
good next shot will lead to a worse outcome. In this paper we
present several categories of deception to fool the current state-of-
the-art agents. By evaluating the performance of the most recent
Angry Birds agents on specific level examples that contain these
deceptive elements, we can show how certain Al techniques can be
tricked or exploited. We also propose some ways that future agents
could help deal with these deceptive levels to increase their overall
performance and generality.

CCS CONCEPTS

« Computing methodologies — Artificial intelligence; » Applied
computing — Computer games;

KEYWORDS
Angry Birds, Agents, Physics-Based games, Video games, Deception

ACM Reference Format:

Matthew Stephenson and Jochen Renz. 2018. Deceptive Angry Birds: To-
wards Smarter Game-Playing Agents. In Foundations of Digital Games 2018
(FDG18), August 7-10, 2018, Malmo, Sweden. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3235765.3235775

Jochen Renz
Research School of Computer Science
Australian National University
Canberra, Australia
jochen.renz@anu.edu.au

1 INTRODUCTION

The creation of an intelligent agent that can reason and predict the
outcome of actions in a physical simulation environment, typically
with inaccurate information, is a key subject of investigation in the
field of AL It is particularly important for the development of such
agents to integrate the areas of computer vision, machine learning,
knowledge representation and reasoning, planning, and reasoning
under uncertainty. The Angry Birds Al (AIBirds) competition was
created as a means to promote the research and creation of these
agents through the use of the physics-based simulation game Angry
Birds [9]. This type of physical reasoning problem is very different
to traditional games as the attributes and parameters of various
objects are often imprecise or unknown, meaning that it is very
difficult to accurately predict the outcome of any action taken [11].
Many of the previous agents that have participated in this competi-
tion employ a variety of techniques, including qualitative reasoning
[16], internal simulation analysis [8, 12], logic programming [5],
heuristics [6], Bayesian inferences [7, 15], and structural analysis
[17]. Some of these approaches are faster, whilst others may be
more consistent or adapt better to new scenarios.

However, even with all these advancements in the development
of Angry Birds agents there are still key weaknesses with the ap-
proaches and designs used. As Angry Birds is an incredibly complex
puzzle game, it is impossible to hand code solutions for every pos-
sible level that an agent could be given. As a result of this, agents
will often make assumptions or generalisations about how levels
are solved which may prove to be incorrect. By creating levels
that exploit an agent’s pre-defined strategies we can deceive it into
making poor shot decisions. Understanding why certain agents can
be fooled by certain types of deception will allow future agents to
perform better and avoid these deception pitfalls. Physical simula-
tion games such as Angry Birds provide a large and varied range of
challenging levels [10], and as such we attempt to classify common
categories where the solution requires creative reasoning in order
to solve it. This is by no means an exhaustive set, but we believe
it encompasses the main types of deception that an Angry Birds
level could pose to an agent. To prevent re-treading already covered
ground, we do not consider levels that only require what we would
term intuitive approaches to solve them, such as aiming directly
at the most pigs or targeting structure weak points, but instead
focus on solution approaches that the majority of current Angry
Birds agents are not capable of achieving. The reasoning required
to solve levels with these deceptive elements should be difficult for
agents but simple and understandable to human players.

The remainder of this paper is organized as follows: Section
2 describes the Angry Birds game and the AIBirds competition
framework; Section 3 discusses the agents that will be examined

§8.2 Paper 87

FDG18, August 7-10, 2018, Malmo, Sweden

Figure 1: Screenshot of a level from the Angry Birds game.

and analysed; Section 4 categorises the types of deception that
Angry Birds levels could contain; Section 5 details the experimental
process and provides a summative description of the results; Section
6 discusses why certain agents and their approaches performed
the way they did for each type of deception, and proposes several
future possibilities.

2 BACKGROUND

2.1 Angry Birds Game

Angry Birds is a popular physics-based puzzle game in which the
player uses a slingshot to shoot birds at pigs, with structures com-
posed of blocks and other physical objects protecting them, see
Figure 1. The goal of each level is to kill all the pigs using a set num-
ber of birds provided. All objects within the level have properties
such as location, size, mass, friction, density, etc., and obey simpli-
fied physics principles defined within the game’s engine. Blocks are
also made of one of three materials, wood, stone or ice. Different
bird types are available with different properties, and pigs are killed
once they take enough damage from either the birds directly or
by being hit with another object. The player can choose the angle
and speed with which to fire a bird from the slingshot, as well as a
tap time for when to activate the bird’s special ability if it has one,
but cannot alter the ordering of the birds or affect the level in any
other way. The difficulty of this game comes from predicting the
physical consequences of actions taken, and accurately planning
a sequence of shots that will result in success. Points are awarded
to the player once the level is solved based on the number of birds
remaining and the total amount of damage caused.

2.2 AlBirds Competition

In this competition, agents are tasked with playing a set number
of unknown Angry Birds levels within a given time, attempting to
score as many points as possible in each level. The exact location and
parameters of certain objects, as well as the current internal state
of the game, are not directly accessible. Instead, information about
the level is provided using a computer vision module, effectively
meaning that an agent gets exactly that same input as a human
player. Agents are required to solve these levels in real-time and
can attempt levels in any order and as many times as they like.
Once the time limit has expired the maximum scores that an agent
achieved for each solved level are summed up to give its final
score. Agents are then ranked based on this value and after several

Matthew Stephenson and Jochen Renz

rounds of elimination a winner is declared. The eventual goal of
this competition is to design Al agents that can play new levels as
well as or better than human players.

2.3 Deception

The idea of deceptive problems for agents in video games is a
relatively new area of research, although some prior work has been
carried out. Most notably in a recent paper exploring the effect
of deceptive games on general video game AI (GVGAI) agents [4].
These agents are designed to play previously unknown games,
whilst attempting to maximise their total score in a set time period.
Agents have full access to both the current game state and a forward
model for determining the result of any action taken. These agents
are usually heavily reliant on each game’s scoring system to help
guide their expected reward function towards desirable actions.
This allows for the creation of levels that can exploit this forward
model to lead agents towards making sub-optimal decisions (i.e.
high short-term reward but small long-term reward).

Agents designed for playing Angry Birds do not have the lux-
ury of a forward model, and so the types of deception offered in
this environment are substantially different from those of GVGAL
Whilst Angry Birds does contain a scoring system, points are only
awarded to an agent after it completes a level, making it difficult
for agents to judge the success of specific actions. Most agents
simply treat killing pigs as a positive outcome and using birds as
a negative, something that we will exploit later on in some of our
deceptive levels. Due to the fact that points are only awarded upon
completion of a level, we only consider whether an agent was able
to solve a level or not, rather than the points it achieved for doing
so. Within this paper, the concept of deception can simply be taken
to mean a particular feature or quality of a level that can cause
agents (or players) to make poor actions (shots) by exploiting their
specific biases or limitations.

It is important to make clear the distinction between deception
and difficulty. Increasing the size or complexity of a level, such as
having more pigs, birds or structures, may make the level more
difficult and require more time to solve it, but does not necessarily
make the level any more deceptive. However, changing the underly-
ing strategies and approaches that are needed to solve a level could
be considered a different form of deception. Levels that contain
deceptive elements are designed to deliberately exploit pre-defined
agent strategies, which prevents or highly impairs their ability to
solve the level.

3 AGENT DISCUSSION

Our analysis will involve investigating the twelve agents that par-
ticipated in the 2017 and/or 2016 AIBirds competitions. Whilst there
have been over 30 different agents that have participated in the
AlBirds competition over the years, the agents from the most recent
competitions represent the best that are currently available. A brief
description of each of these agents is given below, with full details
available on the AIBirds website [3] and in the following papers
(13, 14].

3.0.1 Naive Agent. The Naive agent is provided to all competi-
tion entrants as a useful starting point upon which to create their
own agent. It fires the currently selected bird at a randomly chosen

88 Deceptive Angry Birds: Towards Smarter Game-Playing Agents

Deceptive Angry Birds: Towards Smarter Game-Playing Agents

pig using either a low or high trajectory (also chosen at random).
No other objects apart from the current bird and pigs are used
when determining a suitable shot, and tap times are fixed for each
bird based on the total length of its trajectory. It can therefore
make shot calculations quickly and accurately but is by far the least
sophisticated of the agents.

3.0.2 Datalab Agent. The Datalab agent uses a combination of
four different strategies when attempting to solve a level. These can
be described as the destroy pigs (kill most pigs), building (destroy
blocks protecting or supporting pigs), dynamite (target TNT boxes)
and round blocks (target round blocks or blocks which support
them) strategies. The decision of which strategy to use is based on
the environment, possible trajectories, currently selected bird and
remaining birds.

3.0.3 IHSEV Agent. The IHSEV agent creates an internal Box2D
simulation of the level, within which it tries out many shot angles
and tap times. These mental simulations are carried out in paral-
lel to identify the shot that destroys the most pigs. However, the
simulation is not a perfect representation of the real Angry Birds
environment and there are often many discrepancies between the
two. The vision module has also been slightly improved from the
base code provided so that objects are more robustly identified.

3.0.4 Angry-HEX Agent. The Angry-HEX agent uses HEX pro-
grams to deal with decisions and reasoning, while the computations
are performed by traditional programming. HEX programs are an
extension of answer set programming (ASP) which use declarative
knowledge bases for information representation and reasoning. The
Reasoner module of this agent determines several possible shots
based on different strategies, each of which is then simulated using
an internal Box2D simulation.

3.0.5 Eagle’s Wing Agent. The Eagle’s Wing agent chooses from
five different strategies when deciding what shot to perform. These
are defined as the pigshooter, TNT, most blocks, high round ob-
jects and bottom building blocks strategies. The decision of which
strategy to use is based on the estimated utility of each approach
with the currently selected bird. This utility is calculated based on
the level’s features and how these compare to a small collection of
practice levels that are used to train the agent.

3.0.6 SEABirds Agent. The SEABirds agent uses an Analytic
Hierarchy Process (AHP) for deciding which shots to make, and
determines the best object or structure to hit based on five dif-
ferent criteria. This includes the Y-axis position, surrounding ob-
jects/structures, breakability (for currently selected bird type), rel-
ative distance to pigs and whether the object is a TNT box. The
relative importance of each criteria compared to the other alter-
native options is calculated based on a collection of prior training
levels.

3.0.7 s-birds Agent. The s-birds agent has two different ap-
proaches for determining the most effective shot to perform. The
first strategy is called the bottom-up approach and identifies a set of
candidate target blocks based on the potential number of affected
pigs. The second strategy is called the top-down approach and
utilizes the crushing/rolling effect of a bird or round block onto
pigs, as well as the toppling effect of thinner blocks. Suitable target

FDG18, August 7-10, 2018, Malmo, Sweden

blocks are identified for each method and are then ranked based on
the expected number of pigs killed and the likelihood of the shot’s
success.

3.0.8 Bambirds Agent. The Bambirds agent creates a qualitative
representation of the level and then chooses one of nine differ-
ent strategies based on its current state. This includes approaches
such as utilizing blocks within the level to create a domino effect,
targeting blocks that support heavy objects, maximum structure
penetration and prioritizing protective blocks, as well as simpler
options such as targeting pigs/TNT or utilizing certain bird’s spe-
cial abilities. These strategies are each given a score based on their
estimated damage potential for the current bird type.

3.0.9 PlanA+. The PlantA+ agent alternates between two dif-
ferent strategies each time it attempts a level. The first strategy
involves identifying two possible trajectories to every pig and TNT
within the level, and then counting the number of blocks (for each
material) that are blocking each trajectory from being successful.
This is then compared against the type of bird that is currently
available, to calculate a heuristic for each possible shot. The second
strategy is similar to the first, except that the number of pixels
crossing the trajectory is used rather than the number of blocks.

3.0.10 Vale Fina 007. The Vale Fina 007 agent uses reinforce-
ment learning (specifically Q-learning) to identify suitable shots
for unknown levels based on past experience. The current state of
a level is defined using a list that contains information about every
object within it. Each object is described based on several features,
including the object angle, object area, nearest pig distance, near-
est round stone distance, the weight that the object supports, the
impact that the current bird type has on the object, and several oth-
ers. Q-learning is then used to associate the features of the objects
within a level to certain actions (shots) that result in success.

3.0.11 Condor. The Condor agent chooses from five different
strategies when deciding what shot to perform. These are defined
as the structure, boulder, TNT, bird and alone pig strategies. Each
strategy has corresponding level requirements to decide whether
it’s considered or discarded for the current shot. Each strategy
also has a numerical weighting based on human analysis of their
potential impact for the current level.

3.0.12 AngryBNU. The AngryBNU agent uses deep reinforce-
ment learning, more specifically it uses deep deterministic policy
gradients (DDPG), to build a model for predicting suitable shots
in unknown levels. The model trained with DDPG can be used to
predict optimal shot angles and tap times, based on the features
within a level. The level features that are considered when training
and utilising this model are the current bird type, the distance to
the target points, and a 128x128 pixel matrix around each target
(nearby objects). Continuous Q-learning (SARSA) is used as the
critic model and policy gradient is used as the actor model. By
following this process, a deep learning model is trained to predict
the best target point for a shot based on the level’s features.

4 TYPES OF DECEPTION

Based on our analysis of the strategies and techniques utilised by
our selection of agents, we have come up with six common types

§8.2 Paper 89

FDG18, August 7-10, 2018, Malmo, Sweden

of deception that an Angry Birds level could contain, and that we
believe have a strong possibility of causing agents to make poor
shot decisions. Within some of these categories there also exist
sub-categories based on more exact specifics. It is important to
note that each type of deception described here is unlikely to be
deceptive to all agents, as whether a level is considered deceptive
or not is very specific to the agent and strategy that is used.

4.1 Material analysis

This type of deception requires the agent to analyse the material of
certain blocks within structures to identify which bird types should
be used on them. This involves more straight forward levels where
the agent must simply use each bird against the material it is best
against, but also more challenging levels in which blindly targeting
the material best suited for the current bird will result in failure.
The agent must understand that certain bird types are good against
certain materials, but also that always choosing targets this way
may not lead to the best outcome. The material that each bird type
is strong/weak against is as follows:

Red bird: Neither strong nor weak against any material.
Blue bird: Strong against ice, weak against stone.

Yellow bird: Strong against wood, weak against ice.

Black bird: Strong against stone.

White bird: Neither strong nor weak against any material.

4.2 Non-greedy actions

This type of deception requires the agent to take actions that may
initially seem poor, but pay off in the long term (i.e. kill less pigs
or deal less damage now, to kill more pigs later on). The agent
must look ahead to the future birds that are going to be available
later, and then make a decision with the current bird using this
knowledge (agent must use forward planning). The result of the
first shot(s) will likely not be the best possible for that bird on its
own, but will allow the agent to either make a better shot with a
subsequent bird or accomplish something that later birds cannot

do.

4.3 Non-fixed tap time

This type of deception requires the agent to use a non-fixed tap time
for bird abilities. Most of the agents we examined used a fixed tap
time, either based on the trajectory distance to the object targeted
or the first object hit, towards the end of the bird’s flight path with
a small amount of stochasticity. We therefore designed levels that
required the agent to make either very early or very precise tap
times, relative to the length of the bird’s trajectory. The agent will
have to understand the effect that taping a particular bird type has,
and that this effect can be used in more ways that simply being
stronger against certain materials. The abilities activated by each
bird when tapped are as follows:

Red bird: No special ability.

Blue bird: Splits into three birds.

Yellow bird: Shoots forward in a straight line.

Black bird: Explodes and damages nearby objects.

White bird: Drops an egg directly downwards that explodes
on contact with another object.

Matthew Stephenson and Jochen Renz

No. Description / Solution

01 Use yellow bird on unprotected pig and black bird on pig within stone
structure

02 Same as previous level but now stone structure also has some wood blocks
within it

03 Use black and yellow birds on correct structures

04 Use blue and yellow birds on correct structures

05 Make non-greedy shot with yellow bird

06 Make non-greedy shot with yellow bird (v2.0)

07 Make non-greedy shot with yellow bird (v3.0)

08 Make non-greedy shot with blue bird

09 Make non-greedy shot with black bird

10 Must “waste” first bird in order to solve level with second bird

11 Use blue bird tap time correctly (precise)

12 Use black bird tap time correctly (precise)

13 Use white bird tap time correctly (precise)

14 Use yellow bird tap time correctly (precise)

15 Use yellow bird tap time correctly (early / within normal range)

16 Use yellow bird tap time correctly (early / out of normal range)

17 Knock round wood block so that it rolls down slope onto pig

18 Destroy ice blocks supporting round stone blocks which roll onto pigs
(indirect rolling)

19 Destroy ice blocks supporting round small stone blocks which roll onto
pigs (indirect rolling)

20 Knock round stone block so that it falls on top of pig

21 Knock round small ice blocks so that they fall on top of pig

22 Target structure which collapses and falls on top of pig

23 Use falling red bird after shot collision to hit pig

24 Use falling red bird after shot collision to hit pig (v2.0)

25 Hit TNT to destroy structure and kill pigs

26 Hit TNT to push round stone block on top of pig

27 Target pig directly and ignore structures / TNT

28 Use first bird to clear path for second

29 Use first two birds to clear path for third

30 Use first three birds to clear path for fourth

Table 1: Level number and description / solution

4.4 Rolling/ falling objects

This type of deception uses the fact that objects can roll or fall
after they have been hit. Round blocks in particular can be easily
pushed off terrain platforms or rolled down slopes. Other blocks
and even the birds themselves can also do this. Because of this, we
have come up with three sub-categories for this deception. The
first involves rolling round blocks down slopes (by pushing them
or destroying the objects supporting them) into pigs. The second
involves pushing or rolling blocks off edges or steep drops onto
pigs. The third uses the fact that a bird will fall downwards after
its initial impact, and so could be used to hit pigs not normally
reachable with its basic trajectory.

4.5 TNT

This type of deception involves the use of TNT boxes. These boxes
explode when hit, damaging and/or pushing any objects that are
nearby. Like the previous category, we have devised three possible
cases for the use of TNT in deceptive levels. The first requires the
agent to hit the TNT to cause direct damage to pigs or structures.
The second requires the agent to hit the TNT to cause indirect
damage to pigs by pushing other objects onto them. The third uses
the TNT as a distraction from the real objective of killing pigs, the
agent can solve the level by simply targeting the pigs and hitting
the TNT will not help solve the level.

90 Deceptive Angry Birds: Towards Smarter Game-Playing Agents

Deceptive Angry Birds: Towards Smarter Game-Playing Agents

(d) (Rolling / falling objects)

(b) (Non-greedy actions)

(e) (TNT)

FDG18, August 7-10, 2018, Malmo, Sweden

0 OO
® O ©

(@ 53930

(c) (Non-fixed tap time)

@O C©

(f) (Clearing path)

Figure 2: Six example deceptive levels (a:02 b:05 c:13 d:18 e:26 {:28).

4.6 Clearing path

The final type of deception requires the agent to first clear a path to
a pig before it can be killed. This pig will have obstacles preventing
the agent from killing it immediately, and the agent must use the
first bird(s) to destroy or move blocks that are protecting the pig.
This might be done by directly destroying the block preventing a
successful shot or moving these protective blocks by destroying
their supports. The agent must often plan out a sequence of multiple
shots in order to successfully clear a path to the pig.

5 EXPERIMENTS AND RESULTS

Using our six types of deception as a basis for creating challenging
levels for agents, we designed 30 levels that we believe may deceive
some agents into making poor shot decisions. A brief description of
each level is given in Table 1, as well as six example levels shown
in Figure 2, with full screenshots of all the other levels available in
the appendix. To summarise the type of deception that each level
focuses on, levels 01-04 focus on material analysis, levels 05-10
focus on non-greedy actions/shots, levels 11-16 focus on non-fixed
(precise or early) tap times, levels 17-24 focus on rolling or falling
objects (more specifically 17-19 are on rolling blocks, 20-22 are on
falling blocks, and 23-24 are on falling birds), levels 25-27 focus
on TNT (more specifically 25 is on direct TNT damage, 26 is on
indirect TNT damage, and 27 uses TNT as a red-herring), and levels
28-30 focus on clearing paths.

5.1 Methodology

Each of our selected agents was given three sets of five minutes
to solve each of our deceptive levels. Agents can attempt the level
as many times as they like within each of these five-minute sets.
Agents also had their memory wiped between each of these sets. To
prevent agents which rely heavily on randomness in their decisions
solving levels by lucky shots, each agent needed to solve a level in

at least two out of these three sets to be counted. This experiment
was carried out using an Ubuntu (14.04) 64-bit laptop PC, with
an i15-2520M CPU and 8GB of RAM. While these specs may seem
low, this is the same exact hardware that is used in the AIBirds
competition setting to evaluate and run agents.

5.2 Agent Performance

After fully evaluating each agent’s performance on our deceptive
levels we can consolidate our results, see Table 2. This table shows
which agents were able to consistently solve a particular level
(solved in at least two out of three five-minute sets). We also include
the total number of deceptive levels each agent was able to solve,
the 2016/2017 AIBirds competition rankings, and the benchmark
scores achieved by each agent on the first 42 levels of the "Poached
Eggs" episode from the original Angry Birds game [1]. Figure 3
provides a more visual representation of the total number of levels
containing each type of deception that each agent could solve.

The agent that managed to solve the most levels was Angry-
HEX with 19 levels, while the agent that solved the least levels was
PlanA+ with only five levels. None of the levels were able to be
solved by all agents, and two of the levels could not be solved by any
agent (levels 16 and 23). The hardest levels for most agents seemed
to be those that required, non-greedy shots, precise tap-times, using
the falling bird after first impact, and clearing paths to the pig. While
some agents certainly performed better than others, no agent was
able to successfully dominate across all types of deception.

5.3 Human Performance

We also recruited ten human participants to play our deceptive
levels, again with a five-minute time limit on each level. These par-
ticipants were allowed to play the first 21 levels from the Poached
Eggs episode beforehand, to help those who had never played An-
gry Birds before learn the mechanics of the game. These levels are

§8.2 Paper 91

FDG18, August 7-10, 2018, Malmg, Sweden

Matthew Stephenson and Jochen Renz

Level Naive Datalab | IHSEV Angry- Eagle’s

Number HEX Wing
01
02
03
04

05

SEABirds | s-birds

Bambirds | PlanA+ Vale
Fina 007

Condor | AngryBNU

06

07

08
09

10

11

12

13
14
15
16
17
18

19
20
21
22

23

24

25

26
27
28
29
30

solved 10 16 15 19 17 11

9 8 5 10 9 9

2016 rank 6th 3rd 2nd 7th 5th 4th

8th 1st - - - -

2017 rank - 7th 2nd 3rd 1st -

5th 9th 4th 6th 8th 10th

Benchmark | 1,439,660 | 2,007,850 | 1,429,280 | 1,534,160 | 1,838,470

1,608,406

955,790 1,016,880 1,576,200 | 953,930 956,730 1,382,540

Table 2: Agent performance on deceptive levels (black square indicates solved in at least two out of three sets)

w clearing path

mTNT

mrolling /
falling objects

w non-fixed tap
time

Number of Levels Solved

m non-greedy
actions

m material
analysis

Figure 3: Number of levels that each agent could solve for
each specific type of deception.

also available to all entrants in the AIBirds competition to help
with designing and testing their agents. All participants were able
to solve all 30 of our deceptive levels within the given time limit,
showing that most humans and even newcomers to the game can
solve these creative reasoning problems with relative ease.

6 DISCUSSION AND FUTURE WORK

Based on these results, we can now attempt to identify why certain
agents and the techniques they use are more successful at dealing
with certain types of deception than others.

6.1 Material analysis (levels 01-04)

Most agents were able to solve at least some of the material analysis
levels. Agents that couldn’t solve more than two levels tended to
fail either levels 01 and 02, or 03 and 04. Levels 01/02 required the
agent to target an unprotected pig first followed by a protected pig,
whilst levels 03/04 required the agent to use the correct bird types
on the correct structure materials. There doesn’t appear to be much
reason why specific Al techniques would struggle on these levels,
suggesting that poorly defined heuristics or inaccurate simulations
are likely to be the cause for the observed failures. Agents that
couldn’t solve levels 01/02 were likely coded to target the protected
pig first, as this was perceived to cause more collateral damage
or score additional points. Agents that couldn’t solve levels 03/04
typically targeted the closest structure first, which always resulted
in failure. Any agent with a stochastic target selection policy (such
as the Naive agent) would be able to solve all material analysis
levels given enough time, as it would eventually select the correct
pigs to target by random chance. AngryBNU was the only agent
that didn’t solve any material analysis levels, as it kept making

92 Deceptive Angry Birds: Towards Smarter Game-Playing Agents

Deceptive Angry Birds: Towards Smarter Game-Playing Agents

unusual shots without any real identifiable target. This habit of
AngryBNU to make shots at nothing in particular continued into
other deception categories as well. Datalab was tricked into making
a poor shot by adding some wooden blocks to the stone structure
in level 02, drawing its first shot away from the unprotected pig.
Angry-HEX and SEABirds were able to solve level 04 but not 03,
suggesting that the greater damage potential of the black bird lured
them into making a poor initial shot.

6.2 Non-greedy actions (levels 05-10)

The non-greedy levels proved challenging for a lot of the agents,
with some of the typically high-performing agent’s such as IHSEV,
SEABirds and Eagle’s wing struggling far more than other generally
worse agents. This is likely due to them always attempting to kill
the maximum number of pigs possible with the current bird (as is
certainly the case for IHSEV). While this is usually a wise course
of action, failing to correctly plan an effective sequence of shots
can sometimes lead to a poor final outcome. However, the fact that
certain agents were able solve these levels does not automatically
imply that they can plan multiple shots ahead. Some agent strategies
are designed to target certain materials with specific bird types,
which can cause them to inadvertently solve some of these non-
greedy levels. This is backed up by the fact that most agents were
able to solve non-greedy levels with certain bird types but not with
others (e.g. Datalab was able to make non-greedy shots with the
yellow bird but not with the blue or black birds). It is also the case
that, similar to the material analysis levels, agents which select
targets randomly would also be able to solve most of these levels by
chance after multiple attempts. From our own observations of the
agents playing these levels it is currently unclear whether any of
them even consider which birds are still available, which is essential
in planning out a sequence of shots. Interestingly the only agents
that were able to solve level 10 were those that use an internal
simulation to estimate shot outcomes (IHSEV and Angry-HEX).
This level was unique in that it required the agent to essentially
waste the first (blue) bird, in order to be able to solve the level with
the second (yellow) bird (i.e. targeting the pig with the first bird
makes the level unsolvable). It is likely that the simulations run by
these successful agents determined that the pig could not be killed
with the first bird, resulting in them making a random shot, but
could find a valid solution using the second bird.

6.3 Non-fixed tap time (levels 11-16)

Most of the historically better performing agents with higher bench-
mark scores were able to solve at least some of the levels that re-
quired precise or early tap times for different bird types. This result
might indicate that this is also a useful skill to have when attempt-
ing to solve more traditionally designed Angry Birds levels. Each of
the levels requiring precise tap times (levels 11-14) could be solved
by at least one agent, but no agent was able to solve them all. Most
of these successful agents appeared to be proficient with estimating
how the trajectory or properties of certain bird types changed when
tapped, but bad at doing so for other bird types. IHSEV performed
best on these levels and was the only agent to solve level 11. This
success is likely due to its heavy reliance on internal simulations
to evaluate many possible angles and tap times. This approach was

FDG18, August 7-10, 2018, Malmo, Sweden

a severe downside when tackling non-greedy levels but appears to
have been far more successful here. Most good agents were able to
solve level 15, where the yellow bird must be tapped before hitting
the wooden block, but no agent was able to solve level 16 with a
pig placed outside the regular range of a shot (must use yellow
bird’s ability to travel further than usual). This was likely due to
the trajectory module for the game competition’s framework being
unable to find a valid release point, and is not specifically the fault
of any particular Al technique. Another minor noteworthy point
is that AngryBNU finally decided to stop firing at nothing and
managed to solve some levels at last. It managed to solve levels 12
and 13 by bouncing the bird off the ceiling rather than using its
ability; an unorthodox approach but successful nonetheless.

6.4 Rolling / falling objects (levels 17-24)

Much like the previous deception category, the agents with better
benchmark scores typically performed much better on levels that
required using rolling or falling objects to kill pigs. This would
again suggest that this is a commonly required task when playing
the original Angry Birds levels. Level 17 required agents to knock
a round block (ball) down a slope into a pig to kill it, and could be
achieved easily by most of the high-performing agents. Levels 18
and 19 took this to the next step by requiring the agent to instead
break some blocks supporting several stone balls, which then roll
onto pigs and kill them, with level 18 having large balls and level
19 having smaller balls. A couple of agents that solved level 17
couldn’t deal with this additional level of reasoning, but those that
did managed to solve both levels 18 and 19 successfully.

Levels 20 and 21 required the agent to knock large and small
balls respectively, on top of a pig. Level 22 replaced these balls with
a structure made of rectangular blocks. Most agents that solved
level 20 also solved level 21, with the only exception being Datalab.
By looking at Datalab’s strategy description it would appear that
it treats large balls as more damaging than small ones, which is
likely the reason for this difference. Level 22 was solved by even
fewer agents (although ironically Datalab solved it) and is likely
due to agents treating round blocks as more likely to fall and do
damage than regular structures. Levels 23 and 24 worked on a
similar principle but required agents to use the fact that the bird
itself falls after it makes contact with an object, and that this falling
bird can still kill pigs if it hits them. This was by far the hardest
idea for agents to deal with. The only agent that could successfully
solve a level with this type of deception was IHSEV, which solved
level 24, and was likely due to it stumbling across the successful
action by chance when carrying out internal simulations of many
shot options.

Amazingly, AngryBNU was able to solve all levels that used
rolling or falling blocks, the only agent to do so. The reason for this
is unclear, but definitely worth investigating further in the future.
AngryBNU is the only agent that currently uses deep reinforcement
learning to determine its shots and performed very poorly in most
other types of deception, as well as in the most recent AIBirds com-
petition [2]. However, it seems from our results that this approach
has some useful benefits in specific situations, particularly those
requiring agents to use other objects in the environment to cause
indirect damage.

§8.2 Paper 93

FDG18, August 7-10, 2018, Malmo, Sweden

6.5 TNT (levels 25-27)

Due to the way that the TNT levels were designed, it was virtu-
ally impossible for each agent to not solve at least one level. It is
therefore more important to look at which levels an agent solved in
this category, rather than how many they solved. Naive, SEABirds,
s-birds and Vale Fina 007 agents didn’t target TNT at all in our
levels and so were only able to solve level 27, where the agent must
shoot at the pig and ignore the TNT boxes. Conversely, Bambirds
always targets TNT in our levels even if doesn’t help, meaning
it was only able to solve levels 25 and 26. This suggests that this
behaviour is hard coded and that Bambirds always targets available
TNT, without performing any significant reasoning about the con-
sequences of its actions. These issues are clearly caused by a lack
of considered target possibilities and very poorly coded heuristics
respectively.

A few agents were able to solve level 26 which required an
understanding of indirect TNT damage (TNT explosion pushes
ball on top of pig), but not level 25 where hitting the TNT directly
causes the death of pigs. For IHSEV this could be caused by an
internal simulation error (i.e. assumes that pigs will always die
to TNT explosion regardless of the shot made), but the reason
why the Plan A+ and Condor agents could only solve level 26 is
unclear. Both Angry-HEX and Eagle’s Wing were the only agents
that managed to solve all three TNT levels, suggesting that they
can accurately predict the damage and effect that TNT boxes can
have on surrounding objects.

6.6 Clearing path (levels 28-30)

The first two clearing path levels (28 and 29) required the agent to
initially target objects away from the pig in order to successfully
hit it with later birds. This was a challenging concept for most
agents, with only Angry-HEX and SEABIrds being able to solve
either of these levels. Interestingly, SEABirds was only able to solve
level 29 which required the agent to destroy two protective barriers
between the slingshot and pig but not level 28 which had only one
barrier. This could be due to the fact that the agent believed it could
kill the pig in level 28 without destroying the barrier, or because the
design of the protection was more complex than in level 29. Angry-
HEX was able to solve both levels, suggesting that it currently has
the best structural analysis abilities and an understanding of how
targeting critical support blocks can make solving a level easier for
later birds. Level 30 required the agent to destroy three separate
barriers before the pig could be hit, but each of these barriers could
be destroyed by simply targeting the pig with a low angle trajectory.
This level is actually therefore easier than the previous two, but
agents must still be smart enough to target the pig with a low angle
shot four times in succession (any high angle shots will make the
level unsolvable). Agents that rely on heavily stochastic methods
could theoretically solve this level given enough time but would
only manage to do so very infrequently.

6.7 Summary

From these results it appears that each of the current state-of-the-art
Angry Birds agents is vulnerable to at least some kind of deception,
but different approaches have their own strengths and weaknesses.
Based on this information it would be possible to design a set of

Matthew Stephenson and Jochen Renz

levels that any specific agent would be unable to solve, meaning that
the relative difficulty of a particular level is highly dependent on
the agent being used. It would also be possible to create levels that
contain multiple types of deception, perhaps being able to fool most
or all of the current agents. Understanding exactly why each agent
and the approach it uses fails at certain types of deception, as well
as how to identify these deceptive elements within a given level,
is a problem that must be solved if the goal of creating efficient,
skilful and adaptable agents that can play as well as human players
is to be achieved.

Comparing each agent’s deceptive level performance against
competition rankings and benchmark scores, allows us to examine
how often these deceptive elements appear in more traditional An-
gry Birds levels. Not every evaluated agent participated in both the
2016 and 2017 competitions, making a formal calculation using this
data difficult. However, a moderate positive correlation coefficient
of 0.5787 exists between each agent’s benchmark score and the
number of deceptive levels solved. While agents with higher bench-
marks tended to perform better overall, they are still vulnerable
to certain types of deception due to their assumptions and pre-set
strategies. Datalab, Eagle’s Wing and SEABirds all outperformed
Angry-hex in benchmark scores and the 2016 competition rankings,
but performed worse overall on these deceptive levels. This drop in
performance demonstrates how certain levels can be constructed
to heavily favour certain agents over others.

This research and the results presented have many applications
beyond Angry Birds, to both other video games and real-world
problems. Deceptive categories such as these emphasises the need
for agents to utilise multiple different Al techniques when attempt-
ing to perform complex and highly varied tasks with imprecise
information. Whilst deception categories such as TNT, rolling ob-
jects, material analysis and non-fixed tap times are quite specific to
Angry Birds, the reason why some agents fail on levels that contain
these types of deception can be extended beyond this game. No
matter how many heuristics or pre-defined strategies an agent is
coded with, it will always be possible to design problems that it
cannot solve. The fact that some agents use internal simulations
(IHSEV and Angry-HEX) or reinforcement learning techniques
(AngryBNU and Vale Fina 007) to help improve their abilities is
a good start, but these additions suffer from their own problems
and limitations. We have only scratched the surface here in terms
of the analysis and discussion that could be performed. The sheer
variety of Al techniques and strategies that are employed by the
currently available agents make it very difficult to pinpoint exactly
why the results are the way they are. Nevertheless, we hope to have
provided and accurate and concise summary of where the current
state-of-the-art is lacking and where certain teams may want to
focus their efforts when attempting to improve their agents.

6.8 Future Work

The most obvious way for future agents to deal with these types of
deception would be to expand the range of Al techniques and strate-
gies they can utilise. Even if we combine the performance of just the
four best agents (Datalab, IHSEV Angry-HEX and Eagle’s Wing),
we can theoretically solve 28 of the 30 deceptive levels. However, it
is not only important that an agent has more approaches to solve

94 Deceptive Angry Birds: Towards Smarter Game-Playing Agents

Deceptive Angry Birds: Towards Smarter Game-Playing Agents

levels, but also that it can accurately identify when to use them.
Bambirds has nine potential strategies for selecting shots compared
to Datalab’s four, but the performance of the latter agent is con-
siderably better. Estimating the outcome of particular shots, even
in a more general and qualitative way, is vitally important when
attempting to plan out an effective sequence of shots. Until this can
be achieved, agents will always fail to equal the performance of
human players.

Future research could involve either identifying levels that con-
tain one of these types of deception and determining the AI ap-
proach that would be most suitable (e.g. an ensemble or hybrid
agent), or by developing more sophisticated Al and machine learn-
ing techniques to better solve each deception category (e.g. dynamic
programming or simulation training). Further analysis could also
be carried out on other video games with different mechanics and
challenges. It is clear from our human performance analysis that
whilst agents may struggle, humans are very adept at solving these
deceptive levels. Investigating how human players are able to think
and reason about these types of deception may help design agents
that use the same assumptions and generalisations, potentially
improving their overall performance. Also worth investigating is
whether humans enjoy playing levels with certain types of decep-
tion more. Increasing the length of time to solve a level doesn’t
necessarily increase the difficulty or challenge if the reasoning and
actions required to solve it are still relatively simple. It is highly
likely that levels which contain deceptive elements require players
to think more creatively about the problem, hopefully leading to a
greater level of enjoyment. This was confirmed empirically through
participant discussions, but further analysis may yield substantial
benefits for level designers.

REFERENCES

[1] AlBirds. 2017. Agent Benchmarks. https://aibirds.org/benchmarks.html. Ac-
cessed: 2017-11-21.

AlBirds. 2017. AlBirds 2017 Competition Results. https://aibirds.org/angry-birds-
ai-competition/competition-results.html. Accessed: 2017-11-21.

AlBirds. 2017. AIBirds Homepage. https://aibirds.org. Accessed: 2017-11-21.

[2

[3

) &

~
=/ = =7 = S

01 (Material analysis)

D A ,

06 (Non-greedy actions)

07 (Non-greedy actions)

FDG18, August 7-10, 2018, Malmo, Sweden

[4] Damien Anderson, Matthew Stephenson, Julian Togelius, Christoph Salge, John
Levine, and Jochen Renz. 2018. Deceptive Games. In 21st International Conference
on the Applications of Evolutionary Computation.

[5] F.Calimeri, M. Fink, S. Germano, A. Humenberger, G. Ianni, C. Redl, D. Stepanova,
A. Tucci, and A. Wimmer. 2016. Angry-HEX: An Artificial Player for Angry Birds
Based on Declarative Knowledge Bases. IEEE Transactions on Computational
Intelligence and Al in Games 8, 2 (2016), 128-139.

[6] S. Dasgupta, S. Vaghela, V. Modi, and H. Kanakia. 2016. s-Birds Avengers: A
Dynamic Heuristic Engine-Based Agent for the Angry Birds Problem. IEEE
Transactions on Computational Intelligence and Al in Games 8, 2 (2016), 140-151.

[7] Anjali Narayan-Chen, Liqi Xu, and Jude Shavlik. 2013. An Empirical Evaluation
of Machine Learning Approaches for Angry Birds. In IJCAI Symposium on Al in
Angry Birds.

[8] Mihai Polceanu and Cedric Buche. 2013. Towards A Theory-Of-Mind-Inspired
Generic Decision-Making Framework. In IJCAI Symposium on Al in Angry Birds.

[9] Jochen Renz. 2015. AIBIRDS: The Angry Birds Artificial Intelligence Competition.
In AAAI Conference on Artificial Intelligence. 4326-4327.

[10] Jochen Renz, Xiaoyu Ge, Stephen Gould, and Peng Zhang. 2015. The Angry Birds
AI Competition. AI Magazine 36, 2 (2015), 85-87.

[11] Jochen Renz, XiaoYu Ge, Rohan Verma, and Peng Zhang. 2016. Angry Birds as a
Challenge for Artificial Intelligence. In AAAI Conference on Artificial Intelligence.
4338-4339.

[12] S. Schiffer, M. Jourenko, and G. Lakemeyer. 2016. Akbaba: An Agent for the

Angry Birds AI Challenge Based on Search and Simulation. IEEE Transactions on

Computational Intelligence and Al in Games 8, 2 (2016), 116-127.

Matthew Stephenson and Jochen Renz. 2017. Creating a Hyper-Agent for Solving

Angry Birds Levels. In AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment.

Matthew Stephenson, Jochen Renz, Xiaoyu Ge, and Peng Zhang. 2018. The 2017

AIBIRDS Competition. arXiv:1803.05156 arXiv:1803.05156v1.

N. Tziortziotis, G. Papagiannis, and K. Blekas. 2016. A Bayesian Ensemble Regres-

sion Framework on the Angry Birds Game. IEEE Transactions on Computational

Intelligence and Al in Games 8, 2 (2016), 104-115.

P. A. Walega, M. Zawidzki, and T. Lechowski. 2016. Qualitative Physics in Angry

Birds. IEEE Transactions on Computational Intelligence and Al in Games 8, 2 (2016),

152-165.

Peng Zhang and Jochen Renz. 2014. Qualitative Spatial Representation and

Reasoning in Angry Birds: The Extended Rectangle Algebra. In Proceedings of

the Fourteenth International Conference on Principles of Knowledge Representation

and Reasoning (KR’14). 378-387.

(13

[14

—
=

[16

(17

A DECEPTIVE LEVELS

Additional pictures of the deceptive levels used in our evaluation,
not including those already shown in Figure 2.

= = e
o 56050 g 33660

04 (Material analysis)

08 (Non-greedy actions)

§8.2 Paper 95

FDG18, August 7-10, 2018, Malmo, Sweden Matthew Stephenson and Jochen Renz
Q@) & s Y . 9 ©
e

09 (Non-greedy actions) 11 (Non-fixed tap time)

~
SV S

51240

12 (Non-fixed tap time) 14 (Non-fixed tap time) 15 (Non-fixed tap time)
WO S Y UNCAC)

16 (Non-fixed tap time) 17 (Rolling / falling objects) 19 (Rolling / falling objects)
WO | o N GRCRS S D © a [o]
o] (o] m =

21 (Rolling / falling objects) 22 (Rolling / falling objects)

0 € D Q€ 0 EOIONE i
) © ® O © ®O ©
] =

23 (Rolling / falling objects) 24 (Rolling / falling objects) 25 (TNT)

~) 5
=\ =/ ST A A

(W% 116840 (@ 62980 45920

E

27 (TNT) 29 (Clearing path) 30 (Clearing path)

96

Deceptive Angry Birds: Towards Smarter Game-Playing Agents

Chapter 9

Agent-Based Adaptive Level
Generation for Dynamic Difficulty
Adjustment in Angry Birds

9.1 Foreword

This paper presents an adaptive level generator for Angry Birds that can modify
the difficulty of its generated levels across many different multi-dimensional aspects,
based on the performance of the player. This generator uses almost the same search-
based generation algorithm presented in Chapter [} but with a wider range of ad-
justable input parameters. While technically applicable to both human players and
agents, our primary application for this generator when considering our overarching
motivation will be solely on agents. By using this adaptive generation algorithm
it is possible to create levels that specifically target the limitations of our agents.
This is not just useful for evaluating and identifying weaknesses within certain Al
techniques, but can also provide an automatically updated set of difficult training
examples for reinforcement learning agents.

This work essentially combines the research areas of level generation and agent
analysis together, resulting in a system that can provide personalised levels for agents
based on their prior performance. This allows for an iterative agent improvement
process, where agents are repeatedly modified (either manually by a human designer
or through a reinforcement learning algorithm) and evaluated using this adaptive
level generator, which will then automatically identify and focus on areas where the
agent is struggling the most.

9.2 Paper

M. Stephenson, J. Renz, Agent-Based Adaptive Level Generation for Dynamic Dif-
ficulty Adjustment in Angry Birds, Workshop on Games and Simulations for Artificial
Intelligence at AAAI'19, Honolulu, Hawaii, January 2019, pp. 1-8.

97

g&ent-Based Adaptive Level Generation for Dynamic Difficulty Adjustment in Angry Birds

Agent-Based Adaptive Level Generation for Dynamic Difficulty Adjustment in
Angry Birds

Matthew Stephenson and Jochen Renz
Research School of Computer Science
Australian National University
Canberra, Australia
matthew.stephenson @anu.edu.au, jochen.renz@anu.edu.au

Abstract

This paper presents an adaptive level generation algorithm for
the physics-based puzzle game Angry Birds. The proposed
algorithm is based on a pre-existing level generator for this
game, but where the difficulty of the generated levels can
be adjusted based on the player’s performance. This allows
for the creation of personalised levels tailored specifically to
the player’s own abilities. The effectiveness of our proposed
method is evaluated using several agents with differing strate-
gies and Al techniques. By using these agents as models /
representations of real human player’s characteristics, we can
optimise level properties efficiently over a large number of
generations. As a secondary investigation, we also demon-
strate that by combining the performance of several agents
together it is possible to generate levels that are especially
challenging for certain players but not others.

Introduction

Procedural level generation (PLG), where levels for a game
are created automatically without the need for human de-
signers, is a key area of investigation for video game re-
search (Hendrikx et al. 2013; Togelius et al. 2011). PLG
can be extremely useful for increasing a game’s length and
replayability, as it allows a large number of levels to be cre-
ated in a relatively short time. It is also possible to tailor the
generated levels towards specific user’s playstyles, known as
adaptive level generation, which allows for a unique and per-
sonalised gameplay experience (Yannakakis and Togelius
2011). Dynamic difficulty adjustment (DDA) is a form of
adaptive level generation, where the difficulty of generated
levels is modified to better suit the player’s current skill
based on their performance (Hunicke 2005). This is accom-
plished by modifying certain generator parameters that con-
trol different level features, so that the end result is more
likely to achieve the desired amount of challenge for the
player.

This paper presents an adaptive level generator for the
physics-based puzzle game Angry Birds. This game has
been used substantially in Al research over the past few
years, primarily for developing agents and level generators,
as the game’s environment presents more realistic physical

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

constraints compared to most traditional video games. Suc-
cessfully generating levels for Angry Birds that are equally
as challenging as human-designed levels is a difficult task,
but will likely be necessary for Angry Birds agents to im-
prove beyond their current capabilities. Previous level gener-
ation methods for Angry Birds used either a heuristic calcu-
lation based on level properties or the performance of several
agents to help set the difficulty of a level. However, as differ-
ent players often possess varying levels of ability, many peo-
ple would likely find these levels too hard or easy to solve.
This is also a problem for training and evaluating agents, as
levels where most agents either can or cannot solve them
yield very little discriminatory information (Stephenson et
al. 2018a). We therefore suggest an agent-based adaptive
generation method for dynamic difficulty adjustment, where
the generator adjusts the difficulty of its levels depending
on the player’s performance. This method can also be used
to generate levels that are difficult for one player whilst be-
ing easy for another, exploiting the player’s own strengths or
weaknesses.

The remainder of this paper is organised as follows. Sec-
tion 2 describes the large amount of background and related
work, both for Angry Birds and adaptive level generation in
general. Section 3 presents our proposed adaptive generation
method. Section 4 describes our conducted experiments and
results. Sections 5 discusses what these results could mean
for both human players and agents, Section 6 concludes this
work and outlines future possibilities.

Background
Adaptive Level Generation

While most games that contain some form of PLG typi-
cally use generic generation techniques that are not influ-
enced by the player’s behaviour, adaptive level generation,
also referred to as experience-driven, personalised or player-
centred level generation, takes the player’s behaviour into
account (Shaker er al. 2016). Examples of game or level
characteristics that could be adjusted for specific players in-
clude qualities such as difficulty, engagement, frustration,
enjoyment, complexity, learning potential, etc. These prop-
erties are indirectly controlled by adjusting certain parame-
ters of the generator. Different players will likely behave or
perform differently even when playing the same game. If an

§9.2 Paper 99

accurate model of the player can be determined, then this
can be used to tailor the properties of the generated content
towards their individual preferences.

Constructing a model of the player is a difficult and im-
precise task, but is essential for adaptive level generation to
be effective. Methods for determining player behaviour in-
clude analysing their performance across several “test” lev-
els, or using a questionnaire for measuring more intangi-
ble qualities. This information can then be used to directly
evaluate generated content in the future, allowing us to esti-
mate whether it will be suitable for the player. Another ap-
proach, and the one that we will be using in this paper, is to
use Al agents to estimate the quality of levels (i.e. agent /
simulation-based evaluation functions). Using a collection
of agents as representations of different playing styles or
abilities allows us to generate levels that are suited to a par-
ticular player, or a collection of levels that require several
different techniques to solve them.

Examples of genre’s where adaptive level generation has
been used to improve the player experience include board
games (Marks and Hom 2007), racing games (Togelius et
al. 2007), action-RPG (Heijne and Bakkes 2017), rogue-like
(Stammer et al. 2015), tower defence (Sutoyo et al. 2015),
and platformers (Shaker et al. 2012; 2010).

Dynamic Difficulty Adjustment Dynamic difficulty ad-
justment (DDA) is often considered to be one of the simplest
and most common forms of game adaption, where the dif-
ficulty of a game increases or decreases if the player is per-
forming too well or poorly respectively (Wheat et al. 2015).
Because a player’s performance in a game can typically be
evaluated without the need for questionnaires or overly com-
plex estimations, DDA can usually be implemented in most
games without significant issue. Nearly all games feature
some form of increasing difficulty as the skill of the player
increases, but this element is often lost or overly simplified
with most PLG approaches. However, just because estimat-
ing the difficulty of a game for a specific player is relatively
simple compared to other more complex behavioural charac-
teristics, this certainly doesn’t make the task trivial. The dif-
ficulty of a game can often be multi-dimensional in nature,
where the same level could be considered hard or easy for
various different reasons (Jennings-Teats et al. 2010). Play-
ers can often have unbalanced skill sets, where they are adept
at overcoming certain tasks or challenges more than others.
One player may be very good at forward planning, another
at making precise actions, another with fast response times,
and so on. A successful DDA system should therefore be
able to adjust the difficulty of its generated levels in many
different ways, and also detect which of these most influ-
ence the player’s performance.

Agent-Based Evaluation One approach for evaluating
generated content is to utilise Al agents with different strate-
gies to play through the generated levels (Wheat et al. 2015;
Shaker et al. 2010; Togelius et al. 2007). By selecting the
agent that best models the player’s abilities, we can then use
this agent as a player surrogate in the adaptive level genera-
tion process. This approach has several benefits. First, agents
can often be used to play levels much faster than a normal

Figure 1: Screenshot of a level from the Angry Birds game.

person, allowing us to evaluate a larger number of levels in a
much shorter time (requiring volunteers to playtest hundreds
of levels is not very practical). Agents can also typically give
more accurate estimations of certain level properties (espe-
cially difficulty) than by just analysing the level’s features.
Human players are also likely to improve the longer they
play, making repeated performances inconsistent between
different experiments. The downside of this method is that
it naturally requires a large and diverse range of agents to
already exist, which Angry Birds thankfully has (agents de-
scribed in more detail later).

Angry Birds

Angry Birds is a popular physics-based puzzle game where
the player’s objective for each level is to kill all pigs using a
set number of birds. A typical Angry Birds level like the one
shown in Figure 1, requires the player to shoot the birds they
have from a slingshot at structures made of blocks that are
protecting the pigs. All objects within the level obey simpli-
fied physics principles defined by the game’s engine. Blocks
can come in several different shapes and materials, and birds
can also be one of several different types (all with differ-
ing properties). Pigs and blocks can be killed / destroyed by
hitting them with either a bird or another object. Points are
awarded to the player once the level is solved (all pigs in the
level have been killed) based on the number of birds remain-
ing and the total amount of damage caused. The source code
for the official Angry Birds game is not currently available,
so a modified version of the Unity-based clone known as
Science Birds, originally created by Lucas Ferreira (Ferreira
and Toledo 2014), was used instead.

Level Generation Several level generators have been pre-
sented for Angry Birds in recent years, some of which
have attempted to adapt the generated content based on the
player’s experience. Previous work by (Kaidan et al. 2015;
2016) attempted to measure the difficulty of Angry Birds
levels based on their features, and take this into account
during the generation process. The generator they present is
based on the same genetic algorithm described in (Ferreira
and Toledo 2014), but where the fitness function for evalu-
ating generated levels has been modified to take the desired
difficulty of the level into account. The first approach simply
used the number of pigs within a level as a measure of dif-
ficulty (Kaidan ef al. 2015). The desired number of pigs for

#yent-Based Adaptive Level Generation for Dynamic Difficulty Adjustment in Angry Birds

each level would then be adjusted over multiple generations,
based on the number of pigs that the player was able to kill
in previous levels. An alternative measure of difficulty was
proposed in a subsequent paper (Kaidan et al. 2016), which
attempted to estimate the difficulty of a level based on its
overall impact factor. This was calculated based on the ERA
relations between objects within the level. In both these prior
cases, the fitness function for the generator rewards levels
with an estimated difficulty closest to the desired amount,
which in turn is based on the player’s performance for previ-
ous levels. However, neither of these approaches use agents
to evaluate levels and their estimations of difficulty are based
solely on a level’s features, which are controlled by only a
small number of generator parameters.

Instead of changing the difficulty, some prior genera-
tors investigated other level aspects that might influence the
player’s experience. The Tanager generator evaluated the
immersion and design quality of its generated levels using
an on-line user study (Ferreira and Toledo 2018). This was
in the form of a questionnaire which asked users to rate both
automatically and manually created levels in terms of their
enjoyment, engagement and challenge. The Funny quotes
generator creates levels based on words or quotes for three
levels of difficulty (Jiang et al. 2017). Certain generator pa-
rameters were manually configured for each difficulty cat-
egory, based on the results of a user study into the average
solve and retry rates of players across different levels. A fol-
low up investigation using a similar version of this gener-
ator, modified future levels based on chat comments made
by players inside the game (Jiang et al. 2018). Words within
these comments were used as input parameters when gen-
erating future levels (i.e. the generator adjusts the levels it
creates based on what the players type to each other).

The adaptive generator presented in this paper is based
on the Iratus Aves generator described in (Stephenson and
Renz 2017b; 2016a; 2016b), which was also the winner
of the 2017 and 2018 Angry Birds level generation com-
petitions (AIBirds 2018). The output of this generator can
be partially controlled by changing the values of different
input parameters (i.e. the generator’s parameter set). This
search-based generator previously used a direct fitness func-
tion approach to modify generator parameters over several
generations based on desirable level properties. Instead of
evaluating a generated level based solely on its observable
features, we implement a new agent-based fitness function
which uses the performance of several Angry Birds agents.
Angry Birds agents have been utilised for a small num-
ber of previous generators (Stephenson and Renz 2017b;
Ferreira and Toledo 2018), but only to check if a gener-
ated level is solvable. This paper uses agents to evaluate and
evolve the generated levels in a deeper and more meaningful
way.

Agents A wide variety of Angry Birds agents have been
developed over the past six years for the AIBirds competi-
tion (Renz 2015; Renz et al. 2016; 2015). These agents em-
ploy arange of different Al techniques, including qualitative
reasoning (Walega et al. 2016), internal simulation analy-
sis (Polceanu and Buche 2013; Schiffer er al. 2016), logic

programming (Calimeri et al. 2016), heuristics (Dasgupta
et al. 2016), Bayesian inferences (Tziortziotis et al. 2016;
Narayan-Chen et al. 2013), and structural analysis (Zhang
and Renz 2014). In this paper we selected four different
agents to assist with evaluating generated levels. These were
the Naive, Datalab, SeaBirds and Eagle’s Wing agents. The
Naive agent is the simplest agent available, making it a per-
fect model of a novice player. The remaining three agents
(referred to as “skilled agents”) are some of the best per-
forming agents currently available (Stephenson et al. 2018b;
Stephenson and Renz 2017a), although they are still well
below that of a normal human, with each agent having
their own strengths and weaknesses (Stephenson and Renz
2018). Further details about the specific strategies and Al
techniques used by each of these agents can be found in
(Stephenson et al. 2018b).

Methodology

To reiterate our proposed method using previous termi-
nology, we present an agent-based evaluation function for
level generation, which allows for dynamic difficulty adjust-
ment in Angry Birds and other similar physics-based puzzle
games. To achieve this, we need both a way to evaluate the
player’s performance and a way to update the level genera-
tor’s output based on this performance. By using a search-
based generation approach, we can evolve an initial popula-
tion of parameter sets for our level generator over many gen-
erations using a fitness function (Jennings-Teats et al. 2010;
Shaker et al. 2012).

A general overview of the adaptive level generation pro-
cess is as follows:

1. Measure the performance of the player and all available
agents on a randomly generated collection of levels, and
select the agent that best models the player (e.g. lowest
root-mean-square error).

2. Randomly create an initial population of parameter sets
(individuals) for our level generator.

3. Generate a level for each individual in the population and
record each agent’s performance on these levels.

4. Use these agent performance distributions to calculate a
fitness value for each individual in the population.

5. Evolve this population using a genetic algorithm (selec-
tion, crossover, mutation, elitism, etc.) based on each in-
dividual’s fitness value (i.e. create a new generation).

6. Stop once a desired number of generations has been
reached; otherwise repeat from step 3.

By following this process, the average fitness of the pa-
rameter sets (and levels generated using them) within our
population should increase over multiple generations.

Note that step 1 of this process essentially selects an agent
to act as a representation of our player in all subsequent
steps, and is therefore unnecessary if the player is already
an agent (i.e. only needed for human players).

Adaptive Level Generator

As previously mentioned, our proposed adaption method is
based on the same Angry Birds level generator described

§9.2 Paper 101

Generator Input Parameter Value Range
Number of pigs 1 - 15 (integer)
Number of birds 1 - 8 (integer)

Number of ground structures
Number of platform structures
Maximum number of TNT
Weights for each bird type (x5)
Weights for each material (x3)
Weights for each block shape (x13)

1 -5 (integer)
0 - 4 (integer)
0 - 4 (integer)
0.0 - 1.0 (float)
0.0 - 1.0 (float)
0.0 - 1.0 (float)

Table 1: Input parameters for our adaptive level generator
and their possible value range (minimum - maximum).

in (Stephenson and Renz 2017b; 2016a; 2016b). This gen-
erator previously used a fitness function to evaluate and up-
date the probability of selecting different block shapes based
on certain features of the generated levels. For our adaption
method to be successful, we need to be able to control more
level properties than just the frequency of block shapes. We
therefore extended the number of input parameters that af-
fect the generated levels, see left column of Table 1. Apart
from the increased number of adjustable input parameters,
the level generation algorithm itself was not changed.

The first four parameters define the number of pigs, birds
and structures (both on the ground and platforms) within the
generated level. The fifth parameter determines the maxi-
mum number of TNT boxes that the level can contain (could
potentially be less that this value depending on the avail-
able space). The last three parameters are lists of values that
define weightings for each bird type (five options), material
(three options) or block shape (thirteen options). Unlike the
previous parameters, these weight inputs do not directly de-
fine specific level features, but instead influence the proba-
bility of selecting their respective elements (i.e. if the weight
value of one block shape is twice that of another, then that
block shape has twice the chance of being selected during
level generation). While all weight inputs are float values
between zero and one, integer inputs are limited to within
a fixed value range, see right column of Table 1. Each pa-
rameter set within our population contains values for each
of these generator input parameters (genome length of 26).

Difficulty Estimation

Whilst prior methods for estimating the difficulty of an An-
gry Birds level relied solely on its observable features, we
instead propose a more accurate approach based on agent
performance. This allows us to not only better estimate the
difficulty of levels overall, but also means that the same level
can be given multiple difficulty scores based on different
player’s abilities. Angry Birds has two basic measures of
success. The first is simply solving each level and the second
is achieving a large score for each level, with the score for a
level being awarded after it is solved. This score element to
solving levels allows for an additional degree of depth when
comparing different agents. Perhaps one agent solves a level
less often than another agent, but typically achieves a higher
score when it does. We therefore proposed two possible dif-

ficulty measures (Dso1pe and Dgcore) of a level (L) for an
agent (A;), see Equations 1 and 2.

#TimesSolved(A;, L)
#Attempts(A;, L)

AverageScore(A;, L)
MazimumScore(L)

Dsolve(Ai>L):1_ (l)

Dsco're(Ai7 L) =1- (2)

Both Dg,ppe and Dgeore can be any value between zero
and one (normalised). MazimumScore(L) is defined as
the theoretical score that could be achieved if all pigs and
blocks within L were destroyed using only the first bird.

Essentially, Dy, uses the agent’s solve-rate for a level
as the measure of difficulty, whilst D.,.. uses the score-
rate. Deciding which difficulty measure to use depends on
the desired property of the generated levels.

Fitness Function

Now that we can estimate the difficulty of a level for a spe-
cific agent, we can define fitness functions that use this to
evaluate the parameter sets within our population. The fit-
ness value for each parameter set is based on the difficulty
measures of our agents for a level generated using it. Many
different fitness functions could be defined that each repre-
sent a desired performance distribution of our agent(s), but
we will only focus on two in this paper.

The first function defines the fitness of a level in terms of
the probability that our agent is able to solve the level each
time they attempt it, see Equation 3, where A; is the specific
agent that the generated levels are being adapted for, Dggjqpe
is the observed solve-rate, and D4 is the target / desired
solve-rate.

Fitnessp(As, L) = 1 — abs(Dsotve(As, L) — Diarget) (3)

This allows us to define the desired difficulty of a gener-
ated level for a specific agent as a percentage (i.e. if we want
an agent to solve each generated level 50% of the times it
attempts it, then we simply set D;qrget t0 0.5). Dscore could
also be used as our difficulty measure for this function in-
stead of Dg,pye, but trying to define a desired score-rate for
alevel as a fraction of the total score possible is conceptually
harder to understand than simply the desired solve-rate.

The second fitness function is more complex and utilises
several different agents. Instead of adapting our generated
levels to a fixed solve-rate for a specific agent, it is also
possible to adapt our generated levels to be especially hard
for our chosen agent when compared to the performance of
other agents, see Equation 4, where A is the set of all avail-
able agents.

Fitnessm(As, L) = Dscore(As, L) — ArniI}Ll(DSCOT.g(An, L))
n€
(C))
Using this fitness function will favour levels that our spe-

cific agent performs poorly in, but where other agents per-
form better. Essentially, adapting the generated levels using

Aynt-Based Adaptive Level Generation for Dynamic Difficulty Adjustment in Angry Birds

this fitness function will focus on our specific agent’s weak-
nesses, while using the inverse of this function will generate
levels that focus on its strengths. Using Dcore as our diffi-
culty measure rather than D, allows us to still compare
the performances of different agents, even when their solve-
rates are very similar (i.e. using score-rate gives a more pre-
cise measure of performance then solve-rate).

To summarise, F'itness, gives a higher value to levels
that are closer to the desired solve-rate for a specific agent,
whilst F'itness,,, gives a higher value to levels that a specific
agent finds relatively difficult compared to other agents.

Genetic Algorithm

Once a fitness value for each parameter set in our current
population has been calculated, a genetic algorithm is used
to evolve the population and create the next generation.
Individuals are selected from the current population using
stochastic universal sampling (Baker 1987). This selection
technique reduces the risk of individuals with a large fitness
value being overrepresented in the next population (i.e. gives
individuals with a lower fitness a greater chance of being
chosen). This is desirable, as the uncontrollable stochastic
elements of our generator and agents means that the fitness
value for each parameter set is likely to be only a rough esti-
mate of its actual fitness. An elitism scheme was also used to
select a percentage number of individuals in each generation
with the highest fitness value, and include these in the next
generation unchanged. Uniform crossover and mutation ge-
netic operators were then used to create the new generation
(offspring) from the previously selected individuals of the
current generation (parents). Mutations for each parameter
set value must be within the possible minimum and maxi-
mum range for that parameter, as described in Table 1.

Experiments and Results

Two experiments were conducted using our proposed adap-
tive level generation algorithm, for each of the fitness func-
tions previously described. The first experiment investigated
our adaptive generator’s ability to create levels with a de-
sired solve-rate (F'itness,) for both a novice player (Naive
agent) and an expert player (hyper-agent created from the
skilled agents). The second experiment investigated whether
our adaptive generator could successfully create levels that
skilled agents performed better on than the Naive agent
(F'itnessy, with the Naive agent as Aj), essentially gener-
ating levels that exploited the Naive agent’s limitations.
The specific values used for our genetic and level evolu-
tion algorithms are as follows. Parameter sets were adapted
over 30 generations, with a population size of 50 individ-
uals. Elitism was set at a rate of 8%, crossover probability
at 25%, and mutation probability at 15%. Each agent was
given a three minute time limit to play each generated level
on a heavily sped up version of the modified Science Birds
game. While the number of attempts each agent was able
to complete for each generated level can fluctuate depend-
ing on the agent’s design and the level’s features, each agent
took roughly 2-3 seconds between making each shot. This
means that even if a generated level contained the maximum

0.85
0.8 ~—— = o e’
0.75
@
o 07
s
iz 0.65
0.6
0.55
05 I+
12 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20
Generation #
—Dtarget = 25% Dtarget = 50% Dtarget = 75%

Figure 2: Average F'itness), value of each generation for the
Naive agent.

0.75
0.7 —
—v"__\s/\—"
A 065 et
)]
c
=
L 06
0.55
05 b e
12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Generation #
= Dtarget = 25% Dtarget = 50% Dtarget = 75%

Figure 3: Average F'itness,, value of each generation for the
skilled hyper-agent.

number of birds (eight), each agent would still get at least
SiX or seven attempts to solve it.

Due to the high variance in our generator’s output and
each agent’s performance, the individual results of our ex-
periments were highly stochastic. We therefore repeated
each experiment ten times to reduce any inaccuracy issues,
with the results displayed in the following sections being the
averaged results over all ten repeated experiments. Please
also note that even though our experiments were run over 30
generations the graphs displaying our results only show the
first 20 generations, as the average fitness of our generated
levels never increased significantly past this point.

Percentage Solvability

This experiment investigated the effectiveness of our
Fitness, function for the Naive agent and different Dy ges
values. We also performed the same analysis for a hyper-
agent that selects from our three skilled agents (Datalab,
SeaBirds and Eagle’s Wing), based on the same score pre-
diction models described in (Stephenson and Renz 2017a).
Three Dyqrger values were tested, 25%, 50% and 75%. The
average F'itness,, values over all parameter sets in each gen-
eration, for both the Naive agent and the skilled hyper-agent,
are shown in Figures 2 and 3 respectively. From these results

§9.2 Paper 103

we can see that the average fitness of the generated levels for
all agents and Dy,,¢c; values increased over the generations
tested. However, the rate at which the fitness increased and
the optimal fitness value that could be reasonably achieved,
appears to be different for each agent and Dy, g pairing.

When using a Dygrge; value of 50%, our adaptive gener-
ator took longer to reach a high fitness value compared to
the other Dyq,g4e¢ values. This was likely because levels that
could never be solved and levels that could always be solved
had an equal F'itness, value. Due to the large number of
highly variable parameters that can influence the difficulty
of a generated level, it would be very easy for our adaptive
generator to only produce levels that would probably be im-
possible to solve, by simply making the number of pigs and
structures very high whilst also making the number of birds
very small. The opposite can also be done to generate lev-
els that are incredibly easy to solve. Both of these types of
levels are also very likely to occur in the randomly gener-
ated initial population. As a result of these factors, it is eas-
ier for our adaptive generator to create levels for the lower
or higher Dyq4e¢ values in the earlier generations, as it can
initially focus on simply creating either impossibly hard or
ridiculously easy levels respectively. Using a D;qge¢ Value
of 50% treats both these cases as equally desirable, mean-
ing that our adaptive generator must find a suitable balance
between the two. This naturally takes more time to accom-
plish, but over a large number of generations the average
fitness of the generated levels eventually equals that of the
other Dygrger Values.

Comparing individual Dy, ge¢ values, it also appears that
adapting generated levels for the skilled hyper-agent took
longer to reach a high fitness value when compared to
the Naive agent. The maximum fitness value that could be
achieved also appeared to be less for the skilled hyper-agent,
only around 0.69 compared to the Naive agent’s maximum
fitness of around 0.81. This was likely due to the skilled
hyper-agent have more strategies and behaviours that must
be “learned” by our level adaption algorithm (i.e. combina-
tions of multiple level properties probably required to con-
struct levels of a suitable difficulty).

Relative Solvability

This experiment investigated the effectiveness of our
Fitness,, function for evolving levels that the Naive agent
performed poorly on relative to the performance of more
skilled agents. Generated levels should not only be hard
for the Naive agent (which could easily be achieved using
the F'itness, function and setting Dyqrget to a very small
value) but should also be easier for the skilled agents to solve
with a larger score. If successful, this would essentially cre-
ate levels that require a certain degree of skill to perform
well on, an idea that is often represented within traditional
human-designed levels. The average F'itness,, values over
all parameter sets in each generation are shown in Figure 4.
Please note that as F'itness,, is calculated using the Dgcore
measure, which is based on the theoretical maximum score
that could possibly be obtained for a level and is often sig-
nificantly higher than any realistically achievable score, the
Fitness,, values for levels are significantly lower than the

0.3
0.25
0.2
0.15 /\/\/W
0.1

4

Fitness

0.05

0 —
12 3 4 5 6 7 8 9 101112 1314 1516 17 18 19 20
Generation #

Figure 4: Average F'itness,, value of each generation for
the Naive agent.

Figure 5: Generated level with a high Flitness,, value.

previous F'itness), values.

From these results we can see that the average fitness of
the generated levels increased slightly over the generations
tested. This result is promising, as it means that it is pos-
sible to generate levels that favour certain agents over oth-
ers. By manually comparing the parameter sets of the gener-
ated levels with the highest F'itness,,, values it would seem
that, apart from simply being harder overall, levels that the
Naive agent struggled the most with compared to the skilled
agents contained more TNT boxes and bird types with dif-
ficult to use abilities (yellow, blue and white birds). This
makes sense, as our Naive agent doesn’t directly target TNT
and doesn’t vary the tap time for activating bird’s abilities
(unlike the skilled agents). This observation is also backed
up by a previous investigation into deceptive Angry Birds
level design (Stephenson and Renz 2018).

An example of a level that was generated using an evolved
parameter set based on our Fitness,, function is shown in
Figure 5. This level had a (relatively) high fitness value of
0.62, indicating that at least one of the skilled agents was
able to significantly outperform the Naive agent.

Discussion

Using an agent-based adaption method to adjust the dif-
ficulty of generated levels has many potential uses. Be-
ing able to generate personalised content for human play-
ers has previously been shown to increase user engagement

Agpnt-Based Adaptive Level Generation for Dynamic Difficulty Adjustment in Angry Birds

and overall enjoyment in games (Togelius and Yannakakis
2016), but what we are most interested in discussing here
is how adaptive level generation can be used to help im-
prove agent development. Angry Birds agents that attempt to
use some form of reinforcement learning to solve unknown
levels have become increasingly popular over the past few
years at the annual AIBirds competition (AIBirds 2018;
Stephenson et al. 2018b), but have so far failed to demon-
strate any of the exceptional performance this technique
has exhibited for many other games. In fact, many of these
agents often rank among the lowest performing Angry Birds
agents currently available. One of the main reasons for this
poor performance is believed to be a lack of available levels
for training purposes, something that PLG can help address
(Justesen et al. 2018). We believe that the adaptive genera-
tion method proposed in this paper can potentially be used to
improve the performance of reinforcement learning agents
better than simply using randomly generated levels, and that
adaptive generation can also be used to evaluate and help
identify weaknesses within non-learning agents as well.

Firstly, for generating levels with a fixed percentage
solve-rate for a specific agent (F'itnessy,). When training an
agent it is often desirable to focus on levels that the agent
can occasionally solve, while still leaving plenty of areas to
improve upon. Levels that the agent currently performs very
well on every time do not give much new information to
learn, whilst levels that the agent can never solve also give
little information for the opposite reason. This issue is espe-
cially important in a game like Angry Birds as reward is only
given to the agent when it solves a level, making any accu-
mulated score from previous shots meaningless if the level
is not also solved (i.e. delayed reward). Generating adapted
levels that a learning agent can currently solve some of the
time (e.g. using a Dyq,.ge; value of 50%) will likely help the
agent improve quicker. Although this hypothesis is yet to be
demonstrated, it seems to us like a reasonably intuitive idea.

Secondly, for generating levels that are relatively hard
for a specific agent compared to other agents (Fitnessy,).
Similar to using the F'itness, function, training on lev-
els where our reinforcement learning agent performs poorly
compared to other agents, that perhaps even use different Al
techniques, might help to improve learning efficiency. Us-
ing this approach has the advantage that it can create levels
which emphasise the learning agent’s most obvious weak-
nesses more than others, ensuring that the learning agent’s
more pressing limitations are attended to first (i.e. ensures
that the learning agent is at least on an equal performance to
other agents before attempting to improve beyond this). This
approach could also potentially be used for non-learning
agents, allowing us to identify flaws in our strategies that
need improving the most (i.e. understand where other agents
are outperforming us). Another use is for benchmarking
multiple or new agents, where it is often desirable to test on
a collection of levels the produce a large variation in prior
agent performance (Stephenson et al. 2018a). This could be
achieved by generating a small subset of levels with a high
Flitness,, value for each previous agent, and then combin-
ing these subsets together to give our benchmark set for a
new or improved agent.

Conclusions and Future Work

In this paper we have presented an adaptive level genera-
tor for Angry Birds, that uses agents to adjust the difficulty
of the generated levels based on the player’s performance.
Levels are generated using a search-based approach, with
several different adjustable parameters. A genetic algorithm
and fitness function based on agent performance is then used
to evolve the generator’s parameters over multiple genera-
tions. Levels can be generated for specific player solve-rates,
or that are especially hard for the current player relative to
the performance of others. Several experiments were con-
ducted that demonstrated the effectiveness of our adaptive
generator for both these requirements on a variety of agents.
This approach can be used to create personalised levels for
human players, as well as improving the usefulness of gen-
erated levels for training and evaluating agents.

While the experiments presented in this paper demon-
strate the effectiveness of our adaptive generator (at least
when using agents as human surrogates), there are several
areas that could be improved in the future. The most obvi-
ous improvement would be to increase the number of gener-
ator input parameters that can be adjusted, as well as testing
our method on a greater number of agents. We could also at-
tempt to integrate the Iratus Aves level generator with other
Angry Birds generators, increasing the variety of levels that
could be created. It would also be good to analyse our adap-
tive generator’s ability to cope with learning agents, whose
performance might improve or change over time. We also
hope to be able to investigate our hypothesis that adaptive
level generation can improve the generality and effective-
ness of reinforcement learning agents even more so than reg-
ular level generation algorithms. The approaches presented
in this paper can also be easily extended to other physics-
based puzzle games with similar mechanics.

References

AlBirds. AIBirds homepage. https://aibirds.org, 2018. Accessed:
2018-10-25.

James E. Baker. Reducing bias and inefficiency in the selection al-
gorithm. In Proceedings of the Second International Conference on
Genetic Algorithms on Genetic Algorithms and Their Application,
pages 14-21, 1987.

F. Calimeri, M. Fink, S. Germano, A. Humenberger, G. Ianni,
C. Redl, D. Stepanova, A. Tucci, and A. Wimmer. Angry-HEX:
An artificial player for Angry Birds based on declarative knowl-
edge bases. IEEE Transactions on Computational Intelligence and
Al in Games, 8(2):128-139, 2016.

S. Dasgupta, S. Vaghela, V. Modi, and H. Kanakia. s-Birds
Avengers: A dynamic heuristic engine-based agent for the Angry
Birds problem. [EEE Transactions on Computational Intelligence
and Al in Games, 8(2):140-151, 2016.

L. Ferreira and C. Toledo. A search-based approach for generat-
ing angry birds levels. In Computational Intelligence and Games
(CIG), 2014 IEEE Conference on, pages 1-8, 2014.

L. N. Ferreira and C. F. M. Toledo. Tanager: A generator of feasible
and engaging levels forangry birds. IEEE Transactions on Games,
10(3):304-316, 2018.

N. Heijne and S. Bakkes. Procedural zelda: A pcg environment
for player experience research. In Proceedings of the 12th Inter-

§9.2 Paper 105

national Conference on the Foundations of Digital Games, pages
11:1-11:10, 2017.

M. Hendrikx, S. Meijer, Joeri Van Der Velden, and A. Iosup. Pro-
cedural content generation for games: A survey. ACM Trans. Mul-
timedia Comput. Commun. Appl., 9(1):1-22, 2013.

Robin Hunicke. The case for dynamic difficulty adjustment in
games. In Proceedings of the 2005 ACM SIGCHI International
Conference on Advances in Computer Entertainment Technology,
pages 429433, 2005.

M. Jennings-Teats, G. Smith, and N. Wardrip-Fruin. Polymorph:
A model for dynamic level generation. In Proceedings of the Sixth
AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, pages 138-143, 2010.

Y. Jiang, T. Harada, and R. Thawonmas. Procedural generation
of angry birds fun levels using pattern-struct and preset-model. In
2017 IEEE Conference on Computational Intelligence and Games
(CIG), pages 154-161, 2017.

Y. Jiang, P. Paliyawan, T. Harada, and R. Thawonmas. An audience
participation angry birds platform for social well-being. In GAME-
ON’2018, pages 1-6, 2018.

N. Justesen, R. R. Torrado, P. Bontrager, A. Khalifa, J. To-
gelius, and S. Risi. Illuminating generalization in deep rein-
forcement learning through procedural level generation, 2018.
arXiv:1806.10729v2.

M. Kaidan, C. Y. Chu, T. Harada, and R. Thawonmas. Procedu-
ral generation of angry birds levels that adapt to the player’s skills
using genetic algorithm. In 2015 IEEE 4th Global Conference on
Consumer Electronics (GCCE), pages 535-536, 2015.

M. Kaidan, T. Harada, C. Y. Chu, and R. Thawonmas. Procedural
generation of angry birds levels with adjustable difficulty. In IEEE
Congress on Evolutionary Computation, pages 1311-1316, 2016.

J. Marks and V. Hom. Automatic design of balanced board games.
In Proceedings of the Artificial Intelligence and Interactive Digital
Entertainment International Conference, pages 25-30, 2007.

A. Narayan-Chen, L. Xu, and J. Shavlik. An empirical evaluation
of machine learning approaches for Angry Birds. In IJCAI Sympo-
sium on Al in Angry Birds, 2013.

M. Polceanu and C. Buche. Towards a theory-of-mind-inspired
generic decision-making framework. In IJCAI Symposium on Al in
Angry Birds, 2013.

J. Renz, X. Ge, S. Gould, and P. Zhang. The Angry Birds Al com-
petition. Al Magazine, 36(2):85-87, 2015.
J. Renz, X. Ge, R. Verma, and P. Zhang. Angry Birds as a chal-

lenge for artificial intelligence. In AAAI Conference on Artificial
Intelligence, pages 4338-4339, 2016.

J. Renz. AIBIRDS: The Angry Birds artificial intelligence compe-
tition. In AAAI Conference on Artificial Intelligence, pages 4326—
4327, 2015.

S. Schiffer, M. Jourenko, and G. Lakemeyer. Akbaba: An agent
for the Angry Birds Al challenge based on search and simula-
tion. IEEE Transactions on Computational Intelligence and Al in
Games, 8(2):116-127, 2016.

N. Shaker, G. Yannakakis, and J. Togelius. Towards automatic per-
sonalized content generation for platform games. In Proceedings
of the Sixth AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment, pages 63—68, 2010.

N. Shaker, G. N. Yannakakis, J. Togelius, M. Nicolau, and
M. O’Neill. Evolving personalized content for super mario bros
using grammatical evolution. In Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, pages 75-80, 2012.

N. Shaker, J. Togelius, and M. J. Nelson. Procedural Content Gen-
eration in Games: A Textbook and an Overview of Current Re-
search. Springer, 2016.

D. Stammer, T. Gnther, and M. Preuss. Player-adaptive spelunky
level generation. In 2015 IEEE Conference on Computational In-
telligence and Games (CIG), pages 130-137, 2015.

M. Stephenson and J. Renz. Procedural generation of complex sta-
ble structures for Angry Birds levels. In 2016 IEEE Conference on
Computational Intelligence and Games (CIG), pages 1-8, 2016.

M. Stephenson and J. Renz. Procedural generation of levels for An-
gry Birds style physics games. In Twelfth AAAI Conference on Ar-
tificial Intelligence and Interactive Digital Entertainment (AIIDE-
16), pages 225-231, 2016.

M. Stephenson and J. Renz. Creating a hyper-agent for solving
angry birds levels. In AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, 2017.

M. Stephenson and J. Renz. Generating varied, stable and solvable
levels for angry birds style physics games. In IEEE Conference on
Computational Intelligence and Games (CIG), pages 1-8, 2017.

M. Stephenson and J. Renz. Deceptive angry birds: Towards
smarter game-playing agents. In Proceedings of the 13th Inter-
national Conference on the Foundations of Digital Games, pages
13:1-13:10, 2018.

M. Stephenson, D. Anderson, A. Khalifa, J. Levine, J. Renz, J. To-
gelius, and C. Salge. A continuous information gain measure to
find the most discriminatory problems for ai benchmarking. CoRR,
abs/1809.02904:1-8, 2018.

M. Stephenson, J. Renz, X. Ge, and P. Zhang. The 2017 AIBIRDS
Competition, 2018. arXiv:1803.05156v1.

R. Sutoyo, D. Winata, K. Oliviani, and D. M. Supriyadi. Dynamic
difficulty adjustment in tower defence. Procedia Computer Sci-
ence, 59:435 — 444, 2015.

J. Togelius and G. N. Yannakakis. Emotion in games: Theory and
praxis. pages 155-166. Springer, 2016.

J. Togelius, R. De Nardi, and S. M. Lucas. Towards automatic per-
sonalised content creation for racing games. In IEEE Symposium
on Computational Intelligence and Games, pages 252-259, 2007.

J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne.
Search-based procedural content generation: A taxonomy and sur-

vey. IEEE Transactions on Computational Intelligence and Al in
Games, 3(3):172-186, 2011.

N. Tziortziotis, G. Papagiannis, and K. Blekas. A bayesian ensem-
ble regression framework on the Angry Birds game. IEEE Trans-
actions on Computational Intelligence and Al in Games, 8(2):104—
115, 2016.

P. A. Walega, M. Zawidzki, and T. Lechowski. Qualitative physics
in Angry Birds. IEEE Transactions on Computational Intelligence
and Al in Games, 8(2):152-165, 2016.

D. Wheat, M. Masek, C. P. Lam, and P. Hingston. Dynamic diffi-
culty adjustment in 2d platformers through agent-based procedural
level generation. In 2015 IEEE International Conference on Sys-
tems, Man, and Cybernetics, pages 2778-2785, 2015.

G. N. Yannakakis and J. Togelius. Experience-driven procedural
content generation. [EEE Transactions on Affective Computing,
2(3):147-161, 2011.

P. Zhang and J. Renz. Qualitative spatial representation and reason-
ing in Angry Birds: The extended rectangle algebra. In Proceed-
ings of the Fourteenth International Conference on Principles of
Knowledge Representation and Reasoning, pages 378-387, 2014.

#yent-Based Adaptive Level Generation for Dynamic Difficulty Adjustment in Angry Birds

Chapter 10

The Computational Complexity of
Angry Birds and Similar
Physics-Simulation Games

10.1 Foreword

This paper presents a proof that the computational complexity of solving Angry
Birds levels, for the original version of the game, is NP-complete. As the task of
successfully playing Angry Birds has so far been beyond the abilities of current Al
techniques, it is worth investigating the complexity of the game to try and under-
stand why exactly it is so hard. This proof investigates how hard Angry Birds can
potentially be from a mathematical perspective, and demonstrates that it is possible
to create levels of a certain theoretical difficulty within the Angry Birds environment.
While this computational study is not directly relevant to improving the performance
of Angry Birds agents or level generators it does demonstrate some important and
interesting properties about the game, as well as other video games with similar
physics-based environments.

10.2 Paper

M. Stephenson, J. Renz, X. Ge, The Computational Complexity of Angry Birds
and Similar Physics-Simulation Games, The Thirteenth Annual AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE’17), Snowbird, UT,
October 2017, pp. 241-247.

107

108 he Computational Complexity of Angry Birds and Similar Physics-Simulation Games

The Computational Complexity of Angry Birds and Similar Physics-Simulation
Games

Matthew Stephenson and Jochen Renz and Xiaoyu Ge
Research School of Computer Science
Australian National University
Canberra, Australia
matthew.stephenson @anu.edu.au, jochen.renz@anu.edu.au, xiaoyu.ge @anu.edu.au

Abstract

This paper presents several proofs for the computational com-
plexity of the popular physics-based puzzle game Angry
Birds. By using a combination of different gadgets within this
game’s environment, we can demonstrate that the problem of
solving Angry Birds levels is NP-hard. Proof of NP-hardness
is by reduction from a known NP-complete problem, in this
case 3-SAT. In addition, we are able to show that the origi-
nal version of Angry Birds is within NP and therefore also
NP-complete. These proofs can be extended to other physics-
based games with similar mechanics.

Introduction

The computational complexity of playing different video
games has been the subject of much investigation over
the past decade, with many papers demonstrating specific
video games to be either NP-hard or NP-complete. How-
ever, this has mostly been carried out on traditional style
platformers (Aloupis et al. 2014; Forisek 2010) or prim-
itive puzzle games (Kendall, Parkes, and Spoerer 2008;
Viglietta 2014). In this paper, we analyse the complexity of
playing the original version of the video game Angry Birds,
which is a sophisticated physics-based puzzle game.

The objective of each level in this game is to hit a number
of predefined targets (pigs) with a limited number of shots
(birds), often utilising or avoiding blocks and other game el-
ements to achieve this. This game differs greatly from those
previously investigated due to the fact that the player always
makes their shots from the same location (slingshot position)
and can only vary the speed and angle at which a bird trav-
els from it. This heavily reduces the amount of control that
the player has over each bird’s movement, with the game’s
physics engine being used to determine the outcome of shots
after they are made. The absence of a single highly control-
lable Avatar means that the frameworks applied to most pre-
vious game types, such as platformers, are no longer appli-
cable and new ones must be created.

In order to prove the computational complexity of solv-
ing levels for Angry Birds we will reduce from a known
NP-complete problem. For our proofs we will use reduc-
tion from the problem 3-SAT, which has previously been

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

used to show the complexity of many different video games.
These include Lemmings (Cormode 2004), Portal (De-
maine, Lockhart, and Lynch 2016), Candy Crush (Walsh
2014), Bejeweled (Guala, Leucci, and Natale 2014) and
multiple classic Nintendo games (Aloupis et al. 2014). Al-
ternative compelxity proofs for a variety of other video
games include both older titles, such as Tetris (Demaine,
Hohenberger, and Liben-Nowell 2003), Minesweeper (Kaye
2000) and Pac-Man (Viglietta 2014), as well as more modern
games, such as Crash Bandicoot (Forisek 2010) and multiple
first-person shooters (Demaine, Lockhart, and Lynch 2016).

Complexity proofs have also been presented for many
different block pushing puzzle games, including Sokoban
(Cullberson 1998), Bloxorz (van der Zanden and Bodlaender
2015) and many varieties of PushPush (Demaine, Demaine,
and O’Rourke 2000; Demaine, Hearn, and Hoffmann 2002;
Demaine, Hoffmann, and Holzer 2004). These proofs have
been used to advance our understanding of motion planning
models, due to their real-world similarities (Demaine et al.
2001). It is therefore important that the computational com-
plexity of physics-based games is investigated further, as
playing video games such as Angry Birds has much in com-
mon with other real-world Al and robotics problems (Renz
et al. 2016).

The remainder of this paper is organised as follows: The
next section formally defines the Angry Birds game; We
then present a proof that playing Angry Birds is NP-hard by
reduction from 3-SAT; This proof is then extended to NP-
complete, by demonstrating that the original version of An-
gry Birds is also in NP; We then describe how these proofs
can be generalised to other physics-based games; Lastly, we
conclude this work and propose future possibilities.

Angry Birds Game Definition
Angry Birds is a popular physics-based puzzle game in
which the objective is to kill all the pigs within a 2D level
space using a set number of birds. An example Angry Birds
level is shown in Figure 1. Each level has a predefined size
and any game element that moves outside of its boundaries
is destroyed. The area below the level space is comprised of
solid ground that cannot be moved or changed in any way,
although other elements can be placed on or bounced off
of it. Players make their shots sequentially and in a prede-
fined order, with all birds being fired from the location of the

§10.2 Paper 109

Figure 1: Screenshot of a level for the Angry Birds game.

slingshot. The player can alter the speed (up to a set maxi-
mum) and angle with which these birds are fired from the
slingshot but cannot alter the bird’s flight trajectory after do-
ing so, except in the case of some special bird types with
secondary effects that can be activated by the player. The
level space can also contain many other game elements, such
as blocks, static terrain, explosives, etc. All game elements
have a positive fixed mass, friction, dimensions and shape
(based on their type), and no element may overlap any other.
The level itself also has a fixed gravitational force that al-
ways acts downwards. Calculations done with regard to ob-
ject movement and resolving collisions are simulated using
a simplified physics engine based on Newtonian mechanics.

The description of an Angry Birds level can be formalised
as Level = (1F= 1%, slingshot, birds, pigs, other).

e [, is the width of the level in pixels.
e L, is the height of the level in pixels.

e slingshot is the pixel coordinates (x,y) from which the
player makes their shots.

e birds is a list containing the type and order of the birds
available.

e pigs is a list containing the type, angle and pixel coordi-
nates (, y) of all the pigs.

e other is a list containing the type, angle and pixel coordi-
nates (z,y) of all other game elements.

The top left corner of a level is given the coordinate (0, 0)
and all other coordinates use this as a reference point. The
width and height of a level must be specified as integer val-
ues, and all pixel coordinates (z,y) must be defined as in-
tegers within the level space. For technical reasons L, and
L, are specified in Unary notation, so that the size of the
level description is polynomial to these values themselves
rather than their logarithms. There is also a finite sized list
which contains all the types of birds, pigs and other game el-
ements, as well as their properties (e.g. mass, friction, size,
etc.). This list is fixed in size and so is not relevant to the
complexity of the game.

A strategy for solving a given level description consists of
a sequence of ordered pixel coordinates (z,y) which deter-
mines the speed and angle with which each of the available
birds is fired (release points). While the speed with which a
bird can be fired is bounded, and therefore can only be de-
termined to a set level of precision, the angle of the shot can
be any rational value determined by the release point given.
Therefore, the precision with which shots can be specified,

as well as the number of bits required to define a shot and the
number of distinct shots possible, is polynomial relative to
the size of the level’s description. A tap time is also included
for activating each bird’s secondary effect if it has one. The
general decision problem we are considering in this paper
is whether, for a given Angry Birds level description, there
exists a strategy that results in all pigs being killed.

For the proofs described in this paper only the following
game elements are required:

e Red Birds: These are the most basic bird type within the
game and possess no special abilities. Once the player has
determined the speed and angle with which to fire this bird
it follows a trajectory determined by this and the grav-
ity of the level, which the player cannot subsequently af-
fect. This bird has no secondary effect so a tap time is not
needed.

e Small Pigs: These are the most basic pig type within the
game and are killed once they are hit with either a bird or
block.

e Breakable Blocks: These are blocks that are removed
from the level if they are hit either by a bird or another
block. They are represented in this paper by blocks made
of glass.

e Unbreakable Blocks; These are blocks that do not break
if they are hit but instead react in a semi-realistic physical
way, moving and rotating if forces are applied to them.
They are represented in this paper by blocks made of
stone.

Note. In Angry Birds, each block has a health value that
dictates how much damage it can take before breaking.
When a block is hit by another game element it takes
damage (reduces health) proportional to the speed and
mass of the impacting object. When the health of a block
falls below zero it is removed from the level space. To
create breakable blocks we can simply set the health of
the blocks to zero, and for unbreakable blocks we set
the health value high enough such that the player cannot
break these blocks with the birds they have (i.e. a health
greater than the combined energies of all game elements
in the level).

e Static Terrain: This is simply a set area of the level that
cannot move or be destroyed. It is represented in this pa-
per by plain, untextured, brown areas. The ground at the
bottom of the level space behaves in the same way as this.

For our proofs, we assume that the size of a level is not
bounded by the game engine and that the player’s next shot
only occurs once all game elements are stationary. This lat-
ter restriction is only a simplification to make the construc-
tion process easier to understand. We also assume that the
physics calculations performed by the game engine are not
affected as the size of the level increases (no glitches or other
simulation errors) and that there is no arbitrary fixed preci-
sion with regard to the angles that shots can have. As the
exact physics engine parameters used for Angry Birds are
not currently available for analysis, all assumptions made
about the game and its underlying properties are determined
through careful observation of the original levels.

11dhe Computational Complexity of Angry Birds and Similar Physics-Simulation Games

PLAYER FIRES BIRDS HERE

[Vam'able] [Vam'able] [Variable]

X-zy X -X -y -y X Z zy z
Clause Clause Clause Clause

Figure 2: General framework for NP-hardness.

Angry Birds is NP-hard

Theorem 1. The problem of solving levels for Angry Birds
is NP-hard.

For our proof of NP-hardness we will use a variation of a
general framework for platformers, similar to that used for
many past games (Aloupis et al. 2014; Demaine, Demaine,
and O’Rourke 2000; Demaine, Lockhart, and Lynch 2016),
see Figure 2. This framework can be used to prove that
a game is NP-hard by constructing the necessary gadgets.
This framework reduces from the NP-complete problem 3-
SAT, which consists of deciding whether a 3-CNF Boolean
formula can be made “true” for any combination of vari-
able values. For example, Figure 2 uses the Boolean formula
(xV=zVy)A(zV-aV-y)A(-yV-zVz)A(-zVyVz). For
each variable in the Boolean formula there is an associated
Variable gadget and for each clause in the Boolean formula
there is an associated Clause gadget.

The player can fire a bird into any of the Variable gadgets
within the level but cannot directly fire into any other gad-
get. Each Variable gadget allows the player to set the truth
value of the associated Boolean variable, but this choice
may only be made once. Either choice then “activates” the
Clause gadgets containing the chosen literal. Crossover gad-
gets are used to deal with overlapping lines between Variable
and Clause gadgets (not needed for every game). Once all
Clause gadgets have been “activated” the level is solved. If
all Clause gadgets can be activated, then there exists a solu-
tion to the associated Boolean formula. Thus, any game can
be shown to be NP-hard if the required gadgets can be suc-
cessfully implemented within the game’s environment and
the reduction from Boolean formula to level description can
be achieved in polynomial time.

Variable Gadget

An example of a Variable gadget implementation for Angry
Birds is shown in Figure 3. This gadget allows the player to
choose the truth value of an associated Boolean variable.

Lemma 1.1. A Variable gadget can be used to indicate one
of two Binary choices, positive or negative, and can only be
used once.

Proof. The player can fire a bird into either the left entrance
(A) to indicate a positive value, or the right entrance (B)

Figure 3: Example model of the Variable gadget used.

to indicate a negative value, for the associated Boolean vari-
able. Depending on the player’s choice this causes one of the
angled glass blocks to break, resulting in the highest stone
ball falling into either the left hole if a positive literal was se-
lected, or the right hole if a negative literal was selected. The
bird itself cannot fall down any hole as the gaps between the
entrances and the holes are too small for it to pass through.
As there is only one ball at the top of the gadget the player
can only make this choice once. O

Lemma 1.2. A Variable gadget can be used to activate as
many Clause gadgets as necessary.

Proof. Once the player has made their shot the ball will fall
down the selected hole and break the glass block below it.
This then causes the balls supported by the glass block to fall
either down the tunnels below them (which lead to the cor-
responding Clause gadgets for the selected literal), or onto
another glass block which supports more balls. Each glass
block is wide enough to support a maximum of two stone
balls, so if more balls are needed the second ball will break
another glass block which supports another two balls. This
process continues until as many balls fall down tunnels as
there are Clause gadgets that contain the literal chosen. Each
of these balls then travel down tunnels that lead them to spe-
cific Clause gadgets, which are then activated. O

Lemma 1.3. The width and height of a Variable gadget, as
well as the number of game elements it contains, is poly-
nomial with respect to the number of Clause gadgets that
contain its associated Boolean variable.

Proof. Let Viiy and Vi be constants representing the width
and height respectively of the smallest non-redundant Vari-
able gadget, with only one clause containing each of its lit-
eral choices (i.e. contains only four glass blocks and three
stone balls). For each additional clause that contains the
Boolean variable associated with this Variable gadget, at
most one glass block and two stone blocks are needed on
each side. Therefore, the width and height of any Variable
gadget is bounded by the polynomial expressions Vi +
2C(Gw — Bw) and Vg + 2C(Gy + Bp) respectively,
where C' is the number of clauses in the associated Boolean
formula, Gy and G are the width and height of the glass
rectangular block, and By and By are the width and height

§10.2 Paper 111

¥

Y2

Figure 4: Model of the
Clause gadget used.

Figure 5: Model of the
Crossover gadget used.

of the stone ball. Likewise, the number of glass and stone
blocks in any Variable gadget is bounded by the polynomial
expressions 2C' + 2 and 4C + 1 respectively. O

Clause Gadget

The Clause gadget implementation for Angry Birds is shown
in Figure 4. The balls from each Variable gadget fall down
tunnels (based on the player’s choice) which lead to the cor-
responding Clause gadgets that contain the chosen literal, as
defined by the associated Boolean formula.

Lemma 1.4. A Clause gadget can be used to represent a
chosen clause from any 3-CNF Boolean formula.

Proof. The three tunnels leading into the top of the Clause
gadget each come from a particular literal choice within a
Variable gadget, as determined by the 3-CNF Boolean for-
mula. Any ball that ends up in the Clause gadget will hit the
pig and “activate” the Clause gadget. A level of Angry Birds
is solved once all pigs have been killed, i.e. once all Clause
gadgets are “activated” or all clauses within the Boolean for-
mula are “true”. O

Lemma 1.5. The width and height of a Clause gadget, as
well as the number of game elements it contains, is constant,
regardless of the Boolean formula being used.

Crossover Gadget

The Crossover gadget implementation for Angry Birds is
shown in Figure 5. This gadget is used whenever two tun-
nels between Variable and Clause gadgets cross. The left-
most intersecting tunnel enters at £, and exits at xo, whilst
the rightmost tunnel enters at y; and exits at ys.

Lemma 1.6. A Crossover gadget can be used to transport
balls from x to xo without leakage to y1 or yo, or from y,
to yo without leakage to x1 or xs.

Proof. The Crossover gadget consists of two tunnels, a ver-
tical tunnel and a tunnel at a fixed rational angle (6). Any
ball that enters the gadget at y; will fall straight downwards
and exit out of y, without any risk of entering the angled tun-
nel. Any ball that enters the gadget at z; will roll down the
slope, assuming that the angle 6 is greater than or equal to
the necessary angle to overcome the rolling friction between

the ball and the ground, until it overlaps with the vertical tun-
nel. Once this happens the ball will start to fall downwards
but its momentum will continue to carry it horizontally until
it no longer overlaps the vertical tunnel, assuming that o is
placed low enough to ensure this. The necessary downwards
drop (D) for the angled tunnel can be easily calculated based
on the mass and friction of the ball, as well as the gravita-
tional force of the level and the angle 6. [

Lemma 1.7. The width and height of a Crossover gadget, as
well as the number of game elements it contains, is constant,
regardless of the Boolean formula being used.

Level Construction

As Angry Birds is a game that relies heavily on physics sim-
ulations to resolve player actions, the positions of the gad-
gets within a level are extremely important. Elements within
the game are bound by the physics of their environment and
the only immediate control the player has is with regard to
the shots they make. For this reason, it is necessary to con-
firm that the gadgets described can be successfully arranged
throughout the level space.

Lemma 1.8. Any given 3-SAT problem can be reduced to an
Angry Birds level description in polynomial time.

Proof. We have already shown that each of the necessary
gadgets can be created using a polynomial amount of space
and elements, and can therefore also be described in poly-
nomial time. Consequently, the only remaining requirement
is that all the gadgets can be successfully arranged through-
out the level in polynomial time, relative to the size of the 3-
CNF Boolean formula. As the number of gadgets required is
clearly polynomial, it suffices to describe a polynomial time
method for determining the location of each gadget, as well
as the level’s width, height, slingshot position and number
of birds.

Although the speed at which a bird can be fired from
the slingshot is bounded (less than or equal to a maxi-
mum velocity v,s), we can still ensure that all gadgets are
reachable from the slingshot by placing them lower in the
level. As there is no air resistance, the trajectory of a fired
bird follows a simple parabolic curve for projectile motion,
y = xtan(¢) — mxz, where vy is the initial veloc-

ity of the fired bird, ¢ is the initial angle with which the bird
was fired, and g is the gravitational force of the level. This
means that in order to ensure that all Variable gadgets are
reachable they must be placed at a distance below the sling-
shot equal to or greater than — V7 + %Vﬁ, where Vr is the

combined width of all Variable gadgets. We can also use the
same formula to calculate the maximum height that a bird

2
fired from the slingshot can reach, ”—Z’. Using this we can

2
—vy

set the position of the slingshot to (0, o) and place all
Variable gadgets the required distance below this in a hori-
zontal alignment against the left side of the level.

With the positions of the Variable gadgets defined, we
can now place the Clause gadgets relative to them. All
Clause gadgets are horizontally aligned next to each other

11d'he Computational Complexity of Angry Birds and Similar Physics-Simulation Games

and placed directly to the right of the Variable gadgets. The
Clause gadgets are then moved downwards a distance equal
to or greater than T'(S + D(T — 1) + W (tan(0))), where T
is the total number of Variable gadget tunnels (equivalent to
3C), W is the combined width or all Variable gadgets and
Clause gadgets, D and 6 are the same as in Lemma 1.6, and
S is the size of the Variable gadget tunnels (must be wide
enough for ball to fit down). Each Variable gadget tunnel
is associated with a specific Clause gadget tunnel that con-
tains the literal associated with it. These are allocated based
on horizontal positioning, so the leftmost Variable gadget
tunnel for a specific literal is associated the leftmost Clause
gadget that contains this literal and vice versa. Each Vari-
able gadget tunnel is then also assigned a number based on
its x-axis position, with the leftmost tunnel getting the value
one, and the rightmost tunnel getting the value 7'. The space
between the Variable and Clause gadgets is divided up into
T evenly sized rows, each of which should have a height of
atleast S + D(T — 1) + W (tan(#)). This row size allows
for the worst-case scenario where a tunnel intersects every
other tunnel on the way to its allocated Clause gadget. Each
row is assigned a number based on its y-axis position, with
the bottom row getting the value one, and the top row getting
the value 7'

For each Variable gadget tunnel perform the following.
Firstly, drop the tunnel vertically down until it reaches the
row corresponding to its assigned number. Secondly, direct
the tunnel at an angle of € towards its associated Clause
gadget tunnel until it is directly above it. Finally, drop the
tunnel vertically down until it reaches its associated Clause
gadget tunnel. Any intersections that occur between two tun-
nels will always be between a tunnel directed straight down,
and one at angle 6. This situation is dealt with using the
Crossover gadget previously described. There is no risk of
balls colliding within a Crossover gadget, as the tunnels as-
sociated with a specific literal never intersect. This construc-
tion process can be easily accomplished in polynomial time,
relative to the number of Clause gadgets. An example di-
agram showing how these tunnels lead from the Variable
gadgets to the Clause gadgets is shown in Figure 6, using
the same example Boolean formula as in Figure 2. This is
not a complete to scale construction, as the angled portion
of each tunnel should be contained within its own allocated
row, but has been compressed here to save space.

In addition, we need to guarantee that there are enough
release points available to allow for a bird to be fired into ei-
ther entrance for each Variable gadget. To ensure this we
will move everything constructed so far Vr pixels to the
right. This means that the required width and height of the
level space needed for placing all necessary gadgets can
now be calculated. The required width of a level is equal
to (2Vr + Cr), where Cr is the combined width of all
Clause gadgets. The required height of a level is equal to,

2
—Vr+ FVi+ 5L+ T(S + D(T — 1) + W (tan(0))).
Lastly, the number of birds needed is equal to the number of
Variable gadgets. O

As we have constructed the necessary gadgets and can po-
sition them within the game’s environment in polynomial

L

©,
J‘.|»

i
Figure 6: Framework construction example (not to scale).

time, the problem of solving Angry Birds levels is NP-hard.

Angry Birds is NP-complete

Theorem 2. The problem of solving levels for Angry Birds
is NP-complete.

Having shown that Angry Birds is NP-hard, the only re-
maining requirement for completeness is that it also be in
NP. The problem of solving an Angry Birds level can be de-
fined as within NP if it is possible to solve any level in poly-
nomial time using a non-deterministic Turing machine. This
requirement is equivalent to showing that any strategy for
a given level can be verified on a deterministic Turing ma-
chine in polynomial time, relative to the size of the level’s
description, and that there are a finite number of states and
strategies for any given level.

Lemma 2.1. There are a finite number of states and strate-
gies for any given Angry Birds level.

Proof. The state of a level is defined based on the current
attribute values of all the elements within it. All these val-
ues are defined as rational numbers that each take up a finite
amount of memory. Therefore, it must also be possible to de-
fine the current state of any given level in a finite amount of
memory. Thus, the total number of states for any given level
is finite. As the number of shots and release points for any
given level is polynomial, relative to the size of the level’s
description, the number of possible strategies for a level is
also finite. O

Lemma 2.2. Any strategy for a given Angry Birds level can
be verified in polynomial time.

Proof. The number of elements within a level is clearly
polynomial, relative to the size of its description. The total
amount of energy that a non-static game element has at any
given time can be defined as the sum of four energy values:

e Kinetic Energy, which is determined by its velocity and

muv

mass (TZ)

§10.2 Paper 113

e Gravitational Potential Energy, which is determined by its
location and mass (mgh).

o Effect Energy, which is any extra energy that can be re-
leased by the element due to its effect. This type of energy
is only possessed by specific game elements (e.g. TNT or
black birds) and is always constant depending on the ele-
ment’s type.

e Shot Potential Energy, which is the maximum amount of
energy that the slingshot can add to the element. This type
of energy is only possessed by birds that are yet to be fired
from the slingshot, and is determined by the bird’s mass

2
and the maximum velocity at which it can be fired (*5A0).

The total amount of energy within a level directly after
initialisation is equal to the combined energies of all the el-
ements within it (F7,). No energy is ever added to the level
after this point, only removed. Energy is removed from a
level either when one game element collides with another,
or moves out of bounds (all the element’s remaining energy
lost). There is a minimum velocity for a moving element (set
by the game engine), which means that there is also a mini-
mum non-zero amount of kinetic energy that an element can
possess, which must be equal to the minimum amount of
energy (E,,) lost during a collision (assume that there is al-
ways a loss of some energy during a collision). Because of
this, the maximum number of collisions that can occur for
a given level is g—i The longest amount of time that can
pass without at least one collision occurring, or an element

Ly

moving out of bounds, is 24/ 27 (following parabolic path

from lowest point in level to highest point and back down
under the influence of gravity). Thus, the maximum theoret-
ical amount of time (7') that any strategy can take to carry
out (ignoring time between one shot ending and the next be-
ing performed) is described by equation (1):

2B (2L
T =] 1
E’H’L g ()

(E,, and g are fixed constants defined by the game engine
and must be greater than zero)

This means that any given strategy for an Angry Birds
level can be verified in polynomial time.

As we have shown that any given level within this game
environment has a finite number of states/strategies, and that
a strategy for solving it can always be verified in polynomial
time, we can conclude that the problem of solving Angry
Birds levels is in NP, and thus also NP-complete. This par-
ticular proof of completeness does not hold for all versions
of Angry Birds, as some newer incarnations of the game fea-
ture “bounce pads”, continuously moving platforms, or other
elements that do not possess a finite amount of energy.

Generalisation

The NP-hardness proof described in this paper can be eas-
ily replicated in many other games similar to Angry Birds,
as long as the necessary gadgets can be constructed. In
general, this means that the computational complexity of

any physics-based game can likely be established using our
framework, as long as the following requirements hold:

o A level within the game is solved by, or can only be solved
after, hitting a set number of targets.

e The game contains both static and non-static elements.

e The game contains elements that can either be destroyed
or moved as a result of the player’s actions.

e The physics engine utilised by the game allows for rudi-
mentary systems of gravity and momentum (almost all
simple physics engines should contain this) which affect
certain non-static elements.

e The only influence a player has over elements within
the gadget framework is a single binary decision made
for each Variable gadget, with regard to the movement
of a non-controllable game element (i.e. interaction with
the gadget framework is only through Variable gadget
choices).

e The game must be able to accommodate any number of
Variable/Clause gadgets, and the player should be able
to make at least as many decisions as Variable gadgets
within each level (i.e. the size of a level and the number
of decisions the player can make must be able to increase
indefinitely).

Whilst we cannot be certain that this generalisation is
applicable to all games that contain these features, using
them as loose restrictions allows us to show that many other
physics-based games are NP-hard. This includes both games
that are similar in play style to Angry Birds, such as Siege
Hero or Fragger, as well as games that play considerably dif-
ferently, such as Where’s My Water, Cut the Rope 2 or The
Incredible Machine. Proofs for these games cannot be pro-
vided here due to lack of sufficient space, but will hopefully
be presented in greater detail at some future date.

Conclusion

In this paper we have proven that the task of solving lev-
els for the original version of Angry Birds is NP-complete.
This means that this problem is at least as hard as any other
problem in NP and can be reduced to or from any other NP-
complete problem. Additional complications such as impre-
cise or noisy input data, results of actions being affected
by unknown or random values, and a huge state and ac-
tion space, make the task of solving Angry Birds levels even
more challenging. We have also shown how these proofs can
be generalised to other physics-based games with similar
mechanics.

This work greatly increases the variety of games that have
been investigated within the field of computational complex-
ity, dealing both with the introduction of physics constraints
and limitations, as well as the lack of a single highly con-
trollable Avatar. However, there is still a huge collection of
physics-based and other non-traditional puzzle games that
are available for future analysis, which do not follow the
typical structure of those previously studied. We are there-
fore hopeful that this work will inspire future research into a
more diverse range of game types and problems.

114 he Computational Complexity of Angry Birds and Similar Physics-Simulation Games

References

Aloupis, G.; Demaine, E. D.; Guo, A.; and Viglietta, G.
2014. Classic Nintendo games are (computationally) hard.
In Proceedings of the 7th International Conference on Fun
with Algorithms, 40-51.

Cormode, G. 2004. The hardness of the Lemmings game,
or oh no, more NP-completeness proofs. In Proceedings of
the 3rd International Conference on Fun with Algorithms,
65-76.

Cullberson, J. C. 1998. Sokoban is PSPACE-complete. In
Proceedings of the International Conference on Fun with
Algorithms, 65-76.

Demaine, E. D.; Demaine, M. L.; Hoffmann, M.; and
O’Rourke, J. 2001. Pushing blocks is hard. In Proceedings
of the 13th Canadian Conference on Computational Geom-
etry, 21-36.

Demaine, E. D.; Demaine, M. L.; and O’Rourke, J. 2000.
PushPush and Push-1 are NP-hard in 2D. In Proceedings of
the 12th Canadian Conference on Computational Geometry,
211-219.

Demaine, E. D.; Hearn, R. A.; and Hoffmann, M. 2002.
Push-2-F is PSPACE-complete. In Proceedings of the 14th
Canadian Conference on Computational Geometry, 31-35.

Demaine, E. D.; Hoffmann, M.; and Holzer, M. 2004.
PushPush-k is PSPACE-complete. In Proceedings of the 3rd
International Conference on FUN with Algorithms, 159—
170.

Demaine, E. D.; Hohenberger, S.; and Liben-Nowell, D.
2003. Tetris is hard, even to approximate. In Computing
and Combinatorics, 9th Annual International Conference,
351-363.

Demaine, E. D.; Lockhart, J.; and Lynch, J. 2016. The com-
putational complexity of Portal and other 3D video games.
CoRR arXiv:1611.10319.

Forisek, M. 2010. Computational complexity of two-
dimensional platform games. In Proceedings of the 5th In-
ternational Conference on Fun with Algorithms, 214-227.

Guala, L.; Leucci, S.; and Natale, E. 2014. Bejeweled,
Candy Crush and other match-three games are (NP-)hard.
In Proceedings of the 2014 IEEE Conference on Computa-
tional Intelligence and Games, 1-8.

Kaye, R. 2000. Minesweeper is NP-complete. The Mathe-
matical Intelligence 22:9-15.

Kendall, G.; Parkes, A.; and Spoerer, K. 2008. A survey of
NP-complete puzzles. ICGA Journal 31:13-34.

Renz, J.; Ge, X.; Verma, R.; and Zhang, P. 2016. Angry
Birds as a challenge for artificial intelligence. In Proceed-
ings of the 30th AAAI Conference, 4338—4339.

van der Zanden, T. C., and Bodlaender, H. L. 2015.
PSPACE-completeness of Bloxorz and of games with 2-
buttons. In Algorithms and Complexity: 9th International
Conference, 403-415.

Viglietta, G. 2014. Gaming is a hard job, but someone has
to do it! Theory of Computing Systems 54:595621.

Walsh, T. 2014.
arXiv:1403.1911.

Candy Crush is NP-hard.

CoRR

Chapter 11

The Computational Complexity of
Angry Birds

11.1 Foreword

This paper further extends the work presented in the previous chapter, by provid-
ing additional proofs on the computational complexity of several different Angry
Birds variants. By changing certain environmental properties and level description
requirements within Angry Birds, the complexity of the game can increase signifi-
cantly beyond that of the original version.

11.2 Paper

M. Stephenson, J. Renz, X. Ge, The Computational Complexity of Angry Birds,
Artificial Intelligence Journal (Al]), Under revision, 2018, pp. 1-50.

115

116 The Computational Complexity of Angry Birds

The Computational Complexity of Angry Birds

Matthew Stephenson, Jochen Renz, Xiaoyu Ge

Research School of Computer Science, Australian National University, Canberra, Australia

Abstract

The physics-based simulation game Angry Birds has been heavily researched by the AT community over the
past five years, and has been the subject of a popular Al competition that is being held annually as part
of a leading AI conference. Developing intelligent agents that can play this game effectively has been an
incredibly complex and challenging problem for traditional AI techniques to solve, even though the game
is simple enough that any human player could learn and master it within a short time. In this paper we
analyse how hard the problem really is, presenting several proofs for the computational complexity of Angry
Birds. By using a combination of several gadgets within this game’s environment, we are able to demonstrate
that the decision problem of solving general levels for different versions of Angry Birds is either NP-hard,
PSPACE-hard, PSPACE-complete or EXPTIME-complete. Proof of NP-hardness is by reduction from 3-
SAT, whilst proof of PSPACE-hardness is by reduction from True Quantified Boolean Formula (TQBF).
Proof of EXPTIME-hardness is by reduction from G2, a known EXPTIME-complete problem similar to
that used for many previous games such as Chess, Go and Checkers. To the best of our knowledge, this
is the first time that a single-player game has been proven EXPTIME-complete. This is achieved by using
stochastic game engine dynamics to effectively model the real world, or in our case the physics simulator, as
the opponent against which we are playing. These proofs can also be extended to other physics-based games
with similar mechanics.

Keywords: Computational complexity, Al and games, Physics simulation games, Game playing, Angry

Birds

1. Introduction

The computational complexity of different video games has been the subject of much investigation over the
past decade. However, this has mostly been carried out on traditional style platformers [1, 2] or primitive
puzzle games [3, 4]. In this paper, we analyse the complexity of playing different variants of the video
game Angry Birds, which is a sophisticated physics-based puzzle game with a semi-realistic and controlled
environment [5]. The objective of each level in this game is to hit a number of pre-defined targets (pigs) with

a certain number of shots (birds) taken from a fixed location (slingshot), often utilising or avoiding blocks

Email address: matthew.stephenson@anu.edu.au (Matthew Stephenson, Jochen Renz, Xiaoyu Ge)

Preprint submitted to Journal of Artificial Intelligence December 19, 2018

§11.2 Paper 117

Figure 1: Screenshot of a level for the Angry Birds game.

and other game elements to achieve this. An example of an Angry Birds level is shown in Figure 1. Angry
Birds is a game of great interest to the wider AI research community, due to the complex planning and
physical reasoning required to solve its levels, similar to that of many real-world problems. It has also been
used in the AIBIRDS competition [6] which tasks entrants with developing agents to solve unknown Angry
Birds levels and aims to promote the integration of different AI areas [7]. Many of the previous agents that
have participated in this competition employ a variety of AI techniques, including qualitative reasoning [§],
internal simulation analysis [9, 10], logic programming [11], heuristics [12], Bayesian inferences [13, 14], and
structural analysis [15]. Despite many different attempts over the past five years the problem is still largely
unsolved, with AI approaches far from human-level performance. The fact that solving Angry Birds levels is
very challenging for agents but easy for people, makes the game interesting to explore from a computational
complexity perspective.

Video games have been the subject of much prior research on computational complexity, with many
papers proving specific games to be either NP-hard or PSPACE-complete. Examples of past proofs for
NP-hardness include games such as Pac-Man [4], Lemmings [16], Portal [17], Candy Crush [18], Bejeweled
[19], Minesweeper [20], Tetris [21], and multiple classic Nintendo games [1]. Proofs of PSPACE-completeness
have also been described for games such as Mario Bros. [22], Doom [4], Pokémon [1], Rush Hour [23], Mario
Kart [24] and Prince of Persia [2]. Interestingly, the video game Braid has been proven to be PSPACE-hard
[25] but not PSPACE-complete. However, none of these video games have yet been proven EXPTIME-
complete. Proofs of EXPTIME-completeness have previously been demonstrated for several traditional
two-player board games, including Chess [26], Checkers [27] and the Japanese version of Go [28]. As far as
we are aware, no single-player video game without a traditional opponent has ever been proven EXPTIME-

complete before now.

118 The Computational Complexity of Angry Birds

Complexity proofs have also been presented for many different block pushing puzzle games, including
Sokoban [29], Bloxorz [30] and multiple varieties of PushPush [31, 32, 33]. These proofs have been used to
advance our understanding of motion planning models due to their real-world similarities [34]. It is therefore
important that the computational complexity of physics-based games is investigated further, as playing video
games such as Angry Birds has much in common with other real-world AI and robotics problems [35]. A
physics-based environment is very different to that of traditional games as the attributes and parameters of
various objects are often imprecise or unknown, meaning that it is very difficult to accurately predict the
outcome of any action taken. Angry Birds also differs from many previously investigated games in terms of
its control scheme, as the player always makes their shots from the same location within each level (slingshot
position) and can only vary the speed and angle at which each bird travels from it. This heavily reduces the
amount of control that the player has over the bird’s movement, with the game’s physics engine being used
to determine the outcome of shots after they are made.

The remainder of this paper is organised as follows: Section 2 formally defines the Angry Birds game,
as well as the different variants of it that will be used within our proofs; Section 3 describes the designs
and workings of several gate mechanisms that will be used in later proofs; Sections 4 - 7 present proofs that
particular variants of Angry Birds are either PSPACE-complete, PSPACE-hard, NP-hard or EXPTIME-
complete respectively; Section 8 provides some suggestions and examples as to how the presented proofs
could be extended to other games with similar mechanics; Section 9 concludes this work and proposes future

possibilities.

2. Angry Birds Game Definition

Angry Birds is a popular physics-based puzzle game in which the objective is to kill all the pigs within
a 2D level space using a set number of birds. Each level has a predefined size and any game element that
moves outside of its boundaries is destroyed. The area below the level space is comprised of solid ground
that cannot be moved or changed in any way, although other elements can be placed on or bounced off of it.
Players make their shots sequentially and in a predefined order, with all birds being fired from the location
of the slingshot. The player can alter the speed (up to a set maximum) and angle with which these birds are
fired from the slingshot but cannot alter the bird’s flight trajectory after doing so, except in the case of some
special bird types with secondary effects that can be activated by the player. Once a bird has been fired it
is removed from the level after not moving for a certain period of time. The level space can also contain
many other game elements, such as blocks, static terrain, explosives, etc. All game elements have a positive
fixed mass, friction, dimensions and shape (based on their type), and no element may overlap any other.
Birds that have yet to be fired are the only exception to this rule and may overlap other elements within
the level space (i.e. birds do not interact physically with other game elements until fired from the slingshot;
they are simply visible within the level for visual effect). The level itself also has a fixed gravitational force

that always acts downwards. If two objects collide they will typically bounce off each other or one of the

§11.2 Paper 119

objects will break. Calculations done with regard to object movement and resolving collisions are simulated
using a simplified physics engine based on Newtonian mechanics. The exact mathematics and physical rules
of how the engine works are not provided as this would be incredibly long and tedious. Instead all proofs
presented in this paper are done so at a high level, allowing the concepts and ideas to be easily extended to
other similar games or problems. All level designs presented in subsequent sections have taken the specific
physics of the engine into consideration and can be demonstrated to work within the original Angry Birds
game environment.

The description of an Angry Birds level can be formalised as Level = (L, Ly, slingshot, birds, pigs, other).
e [, is the width of the level in pixels.

e L, is the height of the level in pixels.

e slingshot is the pixel coordinates (z,y) from which the player makes their shots.

e birds is a list containing the number (N), type and order of the birds available.

e pigs is a list containing the type, angle and pixel coordinates (x,y) of all the pigs.

e other is a list containing the type, angle and pixel coordinates (z,y) of all other game elements;

including blocks, static terrain and other miscellaneous objects not considered for our presented proofs.

The top left corner of a level is given the coordinates (0,0) and all other coordinates use this as a
reference point. The width and height of a level must be specified as non-negative integer values, and all
pixel coordinates must be defined as integers within the level space. All numerical values are assumed to be
stored in binary, meaning that the size of a given level description is logarithmic with respect to the values
inside of it. The precision with which the angle of a pig or other game element within the level description
can be defined is set to some arbitrary value (i.e. 0.01 degrees) as the rotation of objects is not important
for the proofs presented in this paper. The type of a bird, pig or other game element is defined using a fixed
length word (e.g. “red” or “small”). How the number of birds (V) is defined greatly impacts the complexity
of the game, with further details on this point described in Section 2.1. There is also a finite sized list which
contains all the possible types of birds, pigs and other game elements, as well as their properties (e.g. mass,
friction, size, etc.). This list is fixed in size and so is not relevant to the complexity of the game.

One important point that must be addressed is how the properties of certain game elements (position,
angle, speed, etc.) are represented within the game engine. Whilst the initial location of each game element
is defined using integer values (pixel coordinates), when the game is being played it is highly likely that the
location of an object could be much more precise (i.e. sub-pixel values). For our proofs we assume that the
current state of a level, including the current properties of all game elements within it, can always be stored
in a polynomial number of bits.

A strategy (5) for solving a given level description consists of a sequence of ordered shots (A;, As, ..., Ay,)-

Each shot (A;) consists of both a pixel coordinates (z,y) within the level space (release point), which

120 The Computational Complexity of Angry Birds

determines the speed (v;) and angle (ap) with which each of the available birds is fired, as well as a tap time
for activating each bird’s secondary effect (ability) if it has one. For our presented proofs we do not use any
bird abilities, meaning that a particular shot A; can be defined using just a release point (z,y). A level is
won/solved once all pigs have been killed, and is lost /unsolved if there are any pigs left once all birds have
been used.

While the speed with which a bird can be fired is bounded, and therefore can only be determined to a
set level of precision, the angle of a shot can be any rational value determined by the release point given.
The tap time for activating a bird’s ability must occur before the bird collides with another game element
or moves out of bounds. Therefore, the precision with which shots can be specified, as well as the number of
bits required to define a shot and the number of distinct shots possible, is polynomial relative to the size of
the level (i.e. the size of the level dictates the number of possible release points/shot angles and tap times,
which in turn determines the number of distinct shots possible), and is exponential relative to the size of the
level description (as all numerical values are specified in binary). This means that the number of possible
distinct shots that a player can make increases as the size of the level increases (i.e. no fixed arbitrary
precision on possible shot angles), but this number is always bounded by the size of the level (L, x L,).

The decision problem we are considering in this paper can be formalised as:

Angry Birds Formal Decision Problem
Instance: Angry Birds level description (Level).

Question: Is there a strategy S that always results in all pigs being killed?

This is the same problem that is faced by both level designers and play testers for this game.

For the proofs described in this paper the following game elements are required:

e Red Birds: These are the most basic bird type within the game and possess no special abilities. Once
the player has determined the speed and angle with which to fire this bird it follows a trajectory
determined by both this and the gravity of the level, which the player cannot subsequently affect. This

bird has no secondary effect so a tap time is not needed.

e Small Pigs: These are the most basic pig type within the game and are killed once they are hit by
either a bird or block.

e Unbreakable Blocks: These are blocks that do not break if they are hit but instead react in a semi-
realistic physical way, moving and rotating if forces are applied to them. They are represented in this

paper by blocks made of stone.

e Static Terrain: This is simply a set area of the level that cannot move or be destroyed. Static terrain is
also not affected by gravity, meaning that it can be suspended in the air without anything else holding
it up. It is represented in this paper by plain, untextured, brown areas. The ground at the bottom of

the level space also behaves in the same way as static terrain.

§11.2 Paper 121

For our proofs, we assume that the size of a level is not bounded by the game engine and, without loss
of generality, that the player’s next shot only occurs once all game elements are stationary. We also assume
that the physics calculations performed by the game engine are not impacted or affected as the size of the
level increases (i.e. no glitches or other simulation errors) and that there is no arbitrary fixed precision with
regard to the angles that shots can have (i.e. the number of distinct shots possible always increases and
decreases based on the size of the level). As the exact physics engine parameters used for Angry Birds are
not currently available for analysis, all assumptions made about the game and its underlying properties are

determined through careful observation.

2.1. Game Variants

While an Angry Birds level that is created using the above description can be shown to be at least
NP-hard, by making additional specifications on the type of physics engine used or how a level is described,
we can increase its complexity further. Deciding whether a particular version of Angry Birds is NP-hard,
PSPACE-hard, PSPACE-complete or EXPTIME-complete is based on a combination of two factors.

Number of Birds: The first factor is whether the number of birds that the player has is polynomial
or exponential relative to the size of the level description. In practical terms this means, does the type and
order of each bird have to specified individually (i.e. an explicit list of all bird types, e.g. [red, blue, black,
red, yellow]) or can the number of birds simply be stated if all birds are the same type (i.e. [red, 5] rather
than [red, red, red, red, red]). If this abbreviated version of birds is valid within the level description then
the player can potentially have an exponential number of birds, otherwise only a polynomial number of birds
is possible. Note that any of our presented proofs for Angry Birds variants that allow an exponential number
of birds will also hold if the number of birds is unbounded, effectively meaning that the number of birds
need only be exponential or greater.

Probabilistic Mlodel: The second factor is whether the physics engine used by the game is deterministic
or stochastic. A game engine that is deterministic will always base its output only on the player’s input,
and so the outcome of any action can be calculated in advance. However, if the game engine is stochastic in
nature then physical interactions between game elements may be influenced slightly by randomly generated
values. This randomness within the engine is used to simulate the effects of unknown variables in the real
world. Specific real-world properties such as air movement (wind), temperature fluctuations, differences in
the gravitational field, object vibrations, etc., might affect the outcome of a physical action. These effects
are usually not modelled and add some stochasticity to the outcome of physical actions. For Angry Birds,
the source of this stochasticity comes from a random amount of noise that is included when collisions occur
within the game’s physics-engine, causing the object(s) involved in the collision to move slightly differently
each time. This means that even if the same collision occurs multiple times for the exact same level state,
the outcome may not always be the same. These changes are typically not very large, often only changing
the outcome very slightly within a pre-defined range of options. While the player might know the different

outcomes that an action could have, they may not know exactly which one will occur until after said action

122 The Computational Complexity of Angry Birds

Game Version Number of Birds Probabilistic Model
NP-hard (ABPD) Polynomial Deterministic
PSPACE-complete (ABED) Exponential / Infinite Deterministic
PSPACE-hard (ABPS) Polynomial Stochastic
EXPTIME-complete (ABES) Exponential / Infinite Stochastic

Table 1: Complexity proof requirements.

is performed. Please note that for the sake of our proofs we consider a game containing elements with
pseudorandom behaviour/physics to still be deterministic, as long as the random seed used to define them
can be encoded in a polynomial number of bits (i.e. not truly stochastic) [1].

Table 1 shows how altering these two factors within the Angry Birds game affects its complexity. For
each of our subsequent complexity proofs, we will assume that we are using the appropriate version of Angry
Birds as defined by this table. These different game versions will be abbreviated as ABPD for our NP-hard
variant, ABED for our PSPACE-complete variant, ABPS for our PSPACE-hard variant, and ABES for our
EXPTIME-complete variant.

3. Gates

Before presenting our complexity proofs we will first define four different “gates” that help dictate the
outcomes of shots taken by the player. The design and behaviour of these gates is described here so that they
can be easily referred to in later sections. Depending on the specific physics parameters of the environment
and objects used, the exact values used to define each gate’s design may vary. However, a gate can always
be created that works for certain velocities and gravitational forces, and we can make sure that these always
occur. The design and parameters of these gates have been fine-tuned for the Angry Birds game engine to
prevent, elements within them from moving in unintended ways, but could easily be generalised to different

game environments.

3.1. Selector Gate
The Selector gate implementation for Angry Birds is shown in Figure 2. The Selector gate can exist in one

of two states, “select-left” or “select-right”, and essentially mimics the behaviour of a 2-output demultiplexer.

Property 3.1. A bird which enters a Selector gate at Ty will exit the Selector gate at Ts, if and only if the
Selector gate is in the select-left position. Otherwise the bird will exit out of Ts.

Property 3.2. A bird which enters a Selector gate at L1 will exit the Selector gate at Lo and set the Selector
gate to the select-left position.

Property 3.3. A bird which enters a Selector gate at Ry will exit the Selector gate at Ry and set the Selector
gate to the select-right position.

§11.2 Paper 123

AR
L2 T2 . T3 R2 L2 T2 k T3 R2
(a) (b)

Figure 2: Models of the Selector gate (a) in the “select-left” position and (b) in the “select-right” position.

L1 T1 L1 T1
sz: L2 TzﬁTs L2
) (b)

(a

Figure 3: Models of the AUT gate (a) in the “select-left” position and (b) in the “select-right” position.

3.2. Automatically Unsetting Transfer Gate

The Automatically Unsetting Transfer Gate (AUT gate) implementation for Angry Birds is shown in

Figure 3. The AUT gate can exist in one of two states, “select-left” or “select-right”.

Property 3.4. A bird which enters an AUT gate at T} will exit the AUT gate at Ty and set the AUT gate
to the select-right position, if and only if the AUT gate is in the select-left position. Otherwise the bird will
ezit out of T3 and not change the AUT gate’s position.

Property 3.5. A bird which enters an AUT gate at L1 will exit the AUT gate at Lo and set the AUT gate
to the select-left position.

3.3. Crossover Gate

The Crossover gate implementation for Angry Birds is shown in Figure 4.
Property 3.6. A bird which enters an Crossover gate at Ly will exit the Crossover gate at Lo.

Property 3.7. A bird which enters an Crossover gate at Ry will exit the Crossover gate at Rs.

124 The Computational Complexity of Angry Birds

T1
L2
L2 R2

Figure 4: Model of the Crossover gate. Figure 5: Model of the Random gate.

R1

R2

3.4. Random Gate

The Random gate implementation for Angry Birds is shown in Figure 5. The Random gate can only be
used in variants of Angry Birds with a stochastic game engine (ABPS and ABES), and essentially mimics

the behaviour of a random binary splitter.

Property 3.8. A bird which enters a Random gate at point T, has a non-zero probability of exiting at point
Ly (P(L3) > 0) and a non-zero probability of exiting at point Ry (P(Rz2) > 0).

Justification. When a bird enters a Random gate at 71, it will hit the tip of the point. When this happens
the physics engine will use randomly generated values to slightly alter the physics of the impact, with three
possible outcomes: the bird falls down the left tunnel (exit at L), the bird falls down the right tunnel (exit
at Rs), the bird remains on the point and falls neither left nor right (doesn’t exit the gate). Property 3.8 is
true if the probability for each of the first two outcomes occurring is greater than zero, which is the case for

the stochastic Angry Birds game environment. O

3.5. Summary

Table 2 summarises for each type of gate, how the bird’s entrance tunnel and the current position of
the gate, dictates the bird’s exit tunnel and the new position of the gate. The first value in each section
represents the bird’s exit tunnel, whilst the second value represents the new position of the gate.

For the diagrams presented in the following proofs we will use a more compact way of representing gates,
see Figure 6. Squares represent Selector gates, circles represent AUT gates, and triangles represent Random
gates, with the location of the arrows representing the entries to and exits from each gate. Arrows leading
from the exit of one gate to the entrance of another, represent tunnels that can be used to connect multiple
gates together. A bird will travel along this tunnel, provided that the start of the tunnel is not below the
end (bird is essentially falling down the tunnel). If a particular arrow is not given for a specific gate, then
that entry or exit is not used (blocked off with static terrain). Any bird which attempts to leave through an

exit that is blocked off will be trapped inside the gate, with the bird subsequently disappearing after a short

§11.2 Paper 125
Entrance Selector gate | Selector gate | AUT gate AUT gate Crossover | Random
(select-left) (select-right) | (select-left) (select-right) | gate gate
T T> | select-left Ts | select-right | T% | select-right | T3 | select-right | N/A Lo or Ro
Ly O | select-left | Oa | select-left | Os | select-left | O | select-left | Lo N/A
Ry C> | select-right | Cs | select-right | N/A N/A R N/A

Table 2: Gate summary, shows exits and final gate positions for given entrances and initial gate positions.

L1 Ry L4 Ty
Ty >| >»To T4 >»T)

Ok, 18 VR L, R

2 Ry 2 2Ry

Figure 6: Selector gate (left), AUT gate (middle) and Random gate (right) compact representations, used in our subsequent

proof diagrams.

period of time. Crossover gates do not have a compact representation, and are instead used to deal with any
intersecting tunnels between the other gates. Note that even though the exact entry and exit locations on
the compact gate representations do not match those on the actual gate models/designs, additional tunnels
and Crossover gates can be easily used to adjust the entry and exit locations for each gate.

Selector gates with T3 blocked off can be thought of as being very similar to that of a “door” mechanism
used in several previous video game complexity proofs [1, 4, 36]. For the sake of both intuitive names and
consistent terminology with prior work, we define new terms for our Selector and AUT gates. If a gate is
in the select-left position then we say that the gate is “open”, and if the gate is in the select-right position
then we say that the gate is “closed”. If a gate is open then we say that it can be “traversed” by firing a
bird into 77, which will then exit out of T5. A gate can be “opened” by firing a bird into L; or “closed” by

Y1)

firing a bird into R;. Entrances T}, L; and R; are referred to as the “traverse”, “open” and “close” paths
respectively. In subsequent proof diagrams that use the compact gate representation shown in Figure 6,
Selector or AUT gates that are closed (i.e. select-right) will have a single line border while those that are
open (i.e. select-left) will have a double line border. This terminology only applies to the Selector and AUT

gates, not the Crossover or Random gates.

126 The Computational Complexity of Angry Birds

4. PSPACE-Completeness (ABED) (exponential and deterministic)

For our proof of PSPACE-hardness, we will reduce from the PSPACE-complete problem TQBF, which
consists of determining if a given quantified 3-CNF Boolean formula is “true”. In order to demonstrate that
Angry Birds is PSPACE-hard, it must be possible to construct a level that represents any given quantified
Boolean formula, which can only be solved if the quantified Boolean formula is true (i.e. the player will be
able to kill the pig(s) within the level by making shots with their bird(s), if and only if the quantified Boolean
formula that the level was created based on is true). We can also extend this proof to PSPACE-completeness
if the problem of solving ABED levels is also in PSPACE. Due to the length and complexity of our presented
proofs, this section will be split into the following sub-sections: Section 4.1 describes a high-level overview
of the framework that we will use to prove that solving ABED levels is PSAPCE-hard; Section 4.2 describes
how we can create the gadgets for this framework within the ABED environment; Section 4.3 describes a
method for constructing this framework within the ABED environment using our designed gadgets; Section
4.4 describes a possible winning strategy for an ABED level based on an example quantified Boolean formula;

and Section 4.5 proves that solving ABED levels is also in PSPACE.

4.1. Framework

For our proof of PSPACE-hardness by TQBF reduction, we will use a heavily modified version of the
general framework described in [1, 4, 36]. This framework uses a systematic procedure to verify if a quantified
Boolean formula is true. This process can be defined in general terms, allowing it to be applied to any game

environment (including Angry Birds).
TQBF verification process:

1. The player initially chooses the value of all existentially quantified variables, and the value of all

universally quantified variables is set to positive.
2. Check that all clauses within the quantified Boolean formula are satisfied (if not then cannot proceed).

3. If all universally quantified variables have a negative value, then the quantified Boolean formula is true

(verification process complete).

4. The universal quantifier (UQg) with the smallest scope (rightmost universal quantifier in Boolean

formula) that has a positive value for its variable, has the value of its variable set to negative.

5. The player can change the value of any existentially quantified variables within the scope of UQ g, and

all universally quantified variables within the scope of UQg are set to positive.

6. Go to step 2.

§11.2 Paper 127

This process can be successfully completed if and only if the given quantified Boolean formula is true.
While we will still be using this same TQBF verification process for our proposed Angry Birds proof,
the overall design of the framework for applying this procedure will be significantly different from those of
previous game examples. This is mostly due to the fact that Angry Birds does not have a single controllable
“Avatar”, and thus has no easy way of achieving a sense of “player traversal”. The general design of our TQBF
verification framework for Angry Birds is shown in Figure 7. This framework can be used to prove that a
game is PSPACE-hard by constructing the necessary “gadgets” (each box within the general framework
diagram). Each of these gadgets serves a distinct purpose and simplifies the complex physics of Angry Birds
into more easily manageable sections (for our proofs, each gadget is made up of multiple interconnected
gates). For each existential quantifier in the Boolean formula there is an associated Existential Quantifier
(EQ) gadget, for each Clause in the Boolean formula there is an associated Clause gadget, and for each
universal quantifier in the Boolean formula there is both an associated Universal Quantifier True (UQ-T)
gadget and Universal Quantifier False (UQ-F) gadget. There is also a Finish gadget, which the player must
be able to “pass through” in order to solve the level. Figure 7 demonstrates an example arrangement of these
gadgets using the quantified Boolean formula JaVy32Vw((z Vy V2) A (mzVwV —z) A (-y Vw V z)) as an
example (each variable in a Boolean formula can have either a “positive” or “negative” truth value). Using
this framework, if the necessary gadgets can be created and arranged in our ABED environment within
polynomial time, then ABED is PSPACE-hard. While it may initially seem unclear as to how exactly this
framework can be used to prove PSPACE-hardness, the following sections will describe the function of each
gadget, as well as how these gadgets combine together within the framework to apply our described TQBF

verification process.

4.1.1. Formal framework reference terms
In this section we define some formal terms that can be used to reference specific gadgets within our

framework:

Definition 1. (enabled, disabled, current, next, next adjacent, next UQ-F, previous, first, last): Each gadget
can either be “enabled” or “disabled” (exactly what this means for each type of gadget is discussed in the
next section). The “current” gadget (Q;) is the (vertically) lowest enabled gadget in the general framework
diagram (Figure 7). The “next” gadget (Q;y1) for the current gadget is indicated by the arrows in our general
framework diagram, which represent the scope of each quantifier. For each UQ-F gadget there are two possible
next gadgets, the next gadget for the UQ-T gadget associated with its variable (horizontal output arrow in
Figure 7) referred to as the “next adjacent” gadget, and the UQ-F' gadget directly below it (vertical output
arrow in Figure 7) referred to simply as the “next UQ-F” gadget (note that the last UQ-F gadget has no
next UQ-F gadget). The “previous” gadget (Q;—1) refers to the most recent current gadget (i.e. essentially
the opposite of the next gadget). We also define the terms “first” gadget and “last” gadget with respect to

the vertical position of specific gadget types in our general framework diagram. The highest of a particular

128 The Computational Complexity of Angry Birds

START

Clause
XIVYWVZ

FINISH

Kill Pig

Figure 7: General framework diagram for PSPACE-hardness (ABED).

gadget type is the first gadget of that type, whilst the lowest is the last gadget (e.g. for Figure 7, the UQ-F
Gadget for the variable w is the first UQ-F gadget, whilst the EQ Gadget for z is the last EQ Gadget).

4.1.2. Gadget design requirements

In this section we describe the purpose and requirements of the gadgets that will need to be followed by
our specific ABED gadget implementations / level construction:

EQ gadget: If an EQ gadget is enabled then the player can use it to set the value of its associated
variable to either positive or negative. Doing this disables the EQ gadget and allows the player to enable
the next gadget.

UQ-T gadget: If a UQ-T gadget is enabled then it automatically sets the value of its associated variable
to positive. The player can then enable the next gadget which also disables the UQ-T gadget.

UQ-F gadget: If a UQ-F gadget is enabled then it alternates between allowing the player to do either
of the following two actions: (A) the player can set the value of its associated variable to negative, which
disables the UQ-F gadget and allows the player to enable the next adjacent gadget; or (B) the player can
disable the UQ-F gadget and enable the next UQ-F gadget. Note that, as previously mentioned, the last
UQ-F gadget does not have a next UQ-F gadget. Attempting to enable the next UQ-F gadget from the last
UQ-F gadget instead attempts to pass through the Finish gadget and solve the level.

§11.2 Paper 129

Clause gadget: A Clause gadget is “activated” if and only if its associated clause is satisfied (i.e. at least
one of the literals in the associated clause is true). The level can be solved if and only if all Clause gadgets
can be activated for each possible value combination of all universally quantified variables (abbreviated to
UQVC). This means that the level can be solved if and only if the given quantified Boolean formula is true.
If the current gadget is a Clause gadget that is both enabled and activated, then the next gadget can be
enabled.

Finish gadget: The Finish gadget can be enabled if and only if all Clause gadgets are both enabled and

activated.

4.1.3. Framework design requirements

The gadget associated with the quantifier with the largest scope (leftmost quantifier in Boolean Formula)
is initially enabled (gadget pointed to by Start label in our general framework diagram), with the UQ-T
version of the gadget being enabled if it is a universal quantifier, whilst all other gadgets are disabled. The
player can enable the first UQ-F gadget at any time, but doing so when the Finish gadget is disabled will
put the level into an unsolvable state (prevents the player from ever being able to pass through the Finish
gadget). Enabling the first UQ-F gadget also disables all Clause and Finish gadgets.

Essentially, the Finish gadget is used to maintain the ordering of the framework, by automatically making
the level unsolvable if the player attempts to open the first UQ-F gadget at any time except after checking
that all Clause gadgets are activated (i.e. once we reach the bottom of the framework we start again from
the top). This action of enabling the first UQ-F gadget begins a new “framework cycle”, with each framework
cycle testing a specific UQVC. Once all possible UQVCs have been tested, and assuming that the Finish
gadget has not made the level unsolvable, then the player can pass through the Finish gadget and solve the

level.

4.1.4. Framework process summary

In summary, the player will initially enable and then disable all EQ and UQ-T gadgets, either choosing
the value of the associated variable or having it automatically set to positive whilst doing so. The first Clause
gadget is then enabled and if it is activated, then the next Clause gadget can also be enabled. If all Clause
gadgets are activated then eventually they will all be sequentially enabled, after which the Finish gadget can
be enabled as well. The player can then enable the first UQ-F gadget (begin new framework cycle) without
putting the level into an unsolvable state, which also closes all Clause and Finish gadgets. Each time a UQ-F
gadget is enabled the outcome will alternate between, setting the value of the associated variable to negative
and then enabling the next adjacent gadget, or enabling the next UQ-F gadget (both outcomes also disable
the current UQ-F gadget). This is equivalent to the next adjacent gadget being enabled if the associated
variable was positive and the next UQ-F gadget being enabled is the associated variable was negative. If the
next adjacent gadget was enabled, then the player can change the values of any variables associated with

EQ gadgets after this point in the framework, as well as any subsequent UQ-T gadgets setting the value of

130 The Computational Complexity of Angry Birds

their associated variable to positive, after which if all Clause gadgets are all still activated then the Finish
gadget will be enabled again. This process repeats 2V times, where U is the number of universal quantifiers
in the Boolean formula. Once the player can enable the next UQ-F gadget for all UQ-F gadgets within a
single framework cycle (value of all universally quantified variables set to negative) a bird will attempt to
pass through the Finish gadget. If the player has ensured that they only enabled the first UQ-F gadget
when the Finish gadget was enabled, then the bird will successfully pass through the Finish gadget and kill
a single pig to solve the level. While this process may initially seem somewhat confusing, following through
our framework using this system will confirm that all UQVCs within the quantified Boolean formula are
indeed tested.

This means that solving the level is equivalent to finding a solution to the given quantified Boolean
formula. Thus, we can show that ABED is PSPACE-hard if the required gadgets can be successfully
implemented within the game’s environment and the reduction from quantified Boolean Formula to level

description can be achieved in polynomial time.

4.2. Gadget Design

This section deals with the implementation and arrangement of the necessary framework gadgets for the
ABED game environment.

All Selector and AUT gates within our gadgets are initially closed except for those in the gadget associated
with the leftmost quantifier from the Boolean Formula (pointed to by Start label), which will initially have
certain gates open corresponding to the gadget’s own definition of being enabled, and the Finish gadget

which will be discussed later.

4.2.1. Ezistential Quantifier (EQ) Gadget

The structure of the EQ gadget implementation for ABED is shown in Figure 8. This gadget is comprised
of two Selector gates (S1,.52) and four AUT gates (A1, Az, Az, Ay), where all AUT gates have traverse paths
that can be shot into by the player. An EQ gadget is enabled if Ay, A5, S; and Sy are open, otherwise it is
disabled.

Property 4.1. An EQ gadget can be used to select one of two binary choices, positive or negative, for an

associated variable, if and only if it is enabled.

Justification. AUT gates A; and A, are used to indicate the choice of which value to set the associated
variable to. The player fires a bird into the traverse path of A; to indicate a positive value, and As to
indicate a negative value. Traversing A; results in A; and S being closed and Az being opened, while
traversing A, results in Ay and S; being closed and A4 being opened. Opening either As or A4 sets the
value of the associated variable to either positive or negative respectively.

As the traverse path of As directly leads into the close path of Si, and the traverse path of A; leads
into the close path of Sy (albeit through S; first), it is impossible to have As open and Sp closed, S1 open

§11.2 Paper 131

Enabled by the
previous gadget

PLAYER
FIRES
BIRDS
HERE
t ;; A3\
. Ay Enable the
Modify Clause Modify Clause next gadget
gadgets (negative) gadgets (positive)

Figure 8: Structure of the Existential Quantifier (EQ) gadget.

and A, closed, or A; open and Ss closed. The value of the associated variable can only be set to positive
by opening As. This can only be done by traversing A; if both it and S; are open. Likewise, the value can
only be set to negative by opening Ay, which is only possible if both Ay and S, are open.

Thus, by combining all this information we can see that neither A3 nor A4 can be opened if the gadget
is disabled. Therefore, the player can only choose the value of the associated variable if the EQ gadget is
enabled. [

Property 4.2. An EQ gadget will become disabled after selecting a value for the associated variable.

Justification. As Ay and A, are AUT gates, we know that traversing either of them will close the gate, and
thus disable the EQ gadget. Traversing either of these two gates is the only way of selecting a value for the

associated variable, so the EQ gadget will clearly be disabled after doing so. O

Property 4.3. The next gadget after an EQ gadget can be enabled if and only if a value has been selected

for the associated variable.

Justification. The next gadget is enabled by firing a bird into the traverse path of either A3 or A4. Opening
either Az or A4 sets the value of the associated variable to either positive or negative respectively. Therefore,

the value for the associated variable must be selected before the next gadget can be enabled. O

Essentially, traversing gate A; or As is used to set the value for the associated variable to either positive

or negative respectively (i.e. setter gates). Traversing gate Az or A4 is used to enable the next gadget once

132 The Computational Complexity of Angry Birds

Enabled by the

PLAYER previous gadget
FIRES A Enable the
BIRDS 1 next gadget
HERE Modify Clause

gadgets (positive)

Figure 9: Structure of the Universal Quantifier True (UQ-T) gadget.

the player has chosen the value of the associated variable (i.e. checker gates). Which of these two gates (As
or Ay) is used to achieve this is based on which value was selected for the associated variable, and traversing
either gate achieves the same end result. Gates S; and S; ensure that the player can only indicate a single
value for the associated variable each time the EQ gadget is enabled.

To summarise, for each existential quantifier in the given quantified Boolean formula there will be an
associated EQ gadget. If an EQ gadget is enabled then the player can use it to set the value of its associated
variable to either positive or negative, after which the EQ gadget is disabled and the next gadget is enabled.
Once the value of a variable associated with an EQ gadget has been set, it cannot be changed during this
framework cycle. The only time the value of an existentially quantified variable can be changed (i.e. its
associated EQ gadget is re-enabled), is if it is within the scope of a universal quantifier that has its value

changed (perhaps not immediately but will occur before the clauses are next checked for activation).

4.2.2. Universal Quantifier True (UQ-T) Gadget
The structure of the UQ-T gadget implementation for ABED is shown in Figure 9. This gadget is
comprised of a single AUT gate (A;), that has a traverse path which can be shot into by the player. A UQ-T

gadget is enabled if A; is open, otherwise it is disabled.

Property 4.4. A UQ-T gadget will set the value of the associated variable to positive, if and only if it is

enabled.

Justification. Opening A; is the only way to enable the gadget, and doing so automatically sets the value of

the associated variable to positive. O
Property 4.5. A UQ-T gadget will become disabled after the associated variable has been set to positive.

Justification. Although the value for the associated variable is automatically set to positive when the gadget
is enabled, the player cannot enable any more gadgets until they traverse A;. Doing this closes A; and thus

disables the gadget. O

Property 4.6. The next gadget after a UQ-T gadget can be enabled if and only if the associated variable

has been set to positive.

§11.2 Paper 133

Enabled by the previous
gadget, or by the player directly
if this is the first UQ-F gadget

PLAYER
FIRES
BIRDS Enable the next UQ-F
HERE gadget, or pass through

the Finish gadget if this
is the last UQ-F gadget
>

Enable the next

Modify CI
odify Clause adjacent gadget

Finish gadgets if this is
gadgets (negative)

Disables all Clause andi
the first UQ-F gadget

Figure 10: Structure of the Universal Quantifier False (UQ-F) gadget.

Justification. The next gadget is enabled by firing a bird into the traverse path of A;. As opening A; sets
the value of the associated variable to positive, this must clearly have already been done in order for the

player to traverse Aj. O

4.2.3. Universal Quantifier False (UQ-F) Gadget

The structure of the UQ-F gadget implementation for ABED is shown in Figure 10. This gadget is
comprised of two Selector gates (S7,52) and three AUT gates (A, Aa, A3), where A;, S; and A3 have
traverse paths that be shot into by the player. A UQ-F gadget is enabled if A;, S; and Sy are open,
otherwise it is disabled. A UQ-F gadget is “unlocked” if A, is open, otherwise it is “locked”. Enabling the
first UQ-F gadget also disables all Clause and Finish gadgets.

Property 4.7. A UQ-F gadget can be used to set the value of an associated variable to negative, if and only
if it is enabled.

Justification. The only initial thing that a player can do to with a UQ-F gadget after it has been enabled is
to traverse either A; or S;. Traversing S; would be pointless at this stage as As is not yet open, so all that
would happen is that Ss would be closed. Traversing A; instead would close both A; and S; but would also
open As and As, as well as setting the value of the associated variable to negative.

As the traverse path of A; directly leads into the close path of S; it is impossible to have one open/closed
and not the other (both gates must always be in the same position). If both are closed then the player
cannot open As and As. If S is closed then it cannot be traversed which also means the player cannot open

Ay or As. Thus, the value of the associated variable can only be set to negative if the gadget is enabled. [

134 The Computational Complexity of Angry Birds

Property 4.8. A UQ-F gadget will become disabled and unlocked after the associated variable has been set

to megative.

Justification. The only way to set value of the associated variable to negative is to open Az. The only way to
achieve this is to traverse A, which closes both A; and S; as well as opening As, causing the UQ-F gadget
to be both disabled and unlocked. O

Property 4.9. The next adjacent gadget after a UQ-F gadget can be enabled if and only if the associated

variable has been set to negative.

Justification. Traversing As is the only way to enable the next adjacent gadget. As opening As sets the
value of the associated variable to negative, this must clearly have already been done first in order for the

player to traverse As. O

Property 4.10. The next UQ-F gadget after a UQ-F gadget can be enabled if and only if the (current)
UQ-F gadget is both enabled and unlocked.

Justification. The only way to enable the next UQ-F gadget is to traverse A; via S;. After the player has
just unlocked a UQ-F gadget they cannot traverse A, as S; has been closed. Instead they must go back
through the framework again, starting from the next adjacent gadget, which can be enabled by traversing As.
Once the UQ-F gadget is enabled again the player can then traverse S; (as As is now open) which enables
the next UQ-F gadget (or attempts to pass through the Finish gadget). Traversing A; instead would just

result in the same outcome as the first time the gadget was enabled and so would be a redundant action. [
Property 4.11. A UQ-F gadget will become disabled and locked after the next UQ-F gadget is enabled.

Justification. The only way to enable the next UQ-F gadget is to traverse S;. Doing so clearly results in So
and As being closed in the process (disables and locks the gadget). The player cannot re-open As as Ss is

now closed, so the gadget will remain locked until it is re-enabled. O

Essentially, traversing gate A; is used to set the value of the associated variable to negative, while
traversing gate S7 is used enable the next UQ-F gadget. The specific wiring arrangement of these gates,
along with the gate S5, ensures that the player can only select one of these two options each time the UQ-F
gadget is enabled. Gate A, ensures that the player can only enable the next UQ-F gadget every other time
the current UQ-F gadget is enabled. Traversing gate As is used to enable the next adjacent gadget, if the
player has set the value of the associated variable to negative (i.e. traversed A; instead of S7).

To summarize, for each universal quantifier in the given quantified Boolean formula, there will be both
an associated UQ-T gadget and UQ-F gadget. Each time the UQ-T gadget is enabled there is only one
possible outcome: the value of its associated variable is set to positive, the UQ-T gadget is disabled and the
next gadget is enabled. Each time the UQ-F gadget is enabled there are two possible outcomes: (A) the

value of its associated variable is set to negative, the UQ-F gadget is disabled and the next adjacent gadget

§11.2 Paper 135

From quantifier paths
labelled as 'modify

Disabled Clause gadgets'
Enabled by the when the first
previous gadgetQUQ—F gadget
»(S1 's enabled »(S, Modify other
(_)Clause gadgets with
—» the same variable
PLAYER ﬂ: (if any more exist)
FIRES - -
BIRDS ~ Modify other
HERE — Clause gadgets with

the same variable
(if any more exist)

I
N
y A
(2] (%2}
o o

NI

Disable other
Clause and Enable the
Finish gadgets next gadget
\4

3 Ld
> Modify other

—>» Clause gadgets with
the same variable
(if any more exist)

DAL

Figure 11: Structure of the Clause gadget.

is enabled, or (B) the UQ-F gadget is disabled and the next UQ-F gadget is enabled (or attempt to pass
through the Finish gadget if this is the last UQ-F gadget). The player can always choose outcome A, but
can only choose outcome B if outcome A was chosen the last time the UQ-F gadget was enabled. However,
choosing outcome A when outcome B is possible will never yield a better result, and will only lead to repeat
checks of already tested UQVCs. Assuming that the player always selects outcome B whenever they can,

each UQ-F gadget will alternate between outcomes A and B each time it is enabled.

4.2.4. Clause Gadget

The structure of the Clause gadget implementation for ABED is shown in Figure 11. This gadget is
comprised of six Selector gates (S1, Se, S3, 54, S5, 56), where S, So and S have traverse paths that can be
shot into by the player. Selector gates S1, S2 and S3 must always be in the same position (closed or open).
A Clause gadget is enabled if Sy, Sy and S3 are all open, and is disabled if Sy, So and S3 are all closed. Each
Clause gadget is associated with a particular clause from the quantified Boolean formula, and each of the
Selector gates Sy, S5 and Sg is associated with a specific literal from that clause. The first Clause gadget is
enabled by the last Quantifier gadget and the Finish gadget is enabled by the last Clause gadget.

When the value of a variable is modified using a Quantifier gadget (exit paths labelled as “modify Clause
gadgets”), the bird on this path will fall down tunnels which lead to the first Clause gadget that contains
the variable associated with it. If the value of the variable was set to positive then the bird opens any
of Sy, S5 or Sg that are associated with the variable’s positive literal, whilst closing any of those that are
associated with the variable’s negative literal (vice versa if the value of the variable was set to negative).

This bird then travels into the next Clause gadget that contains this variable, and the process repeats until

136 The Computational Complexity of Angry Birds

Disabled when the first Enabled by the
UQ-F gadget enabled last Clause gadget

From the last UQ-F
gadget (pass through

the Finish gadget)
S4}—> Kill Pig

Figure 12: Structure of the Finish gadget.

all applicable Clause gadgets have been visited. Therefore each Clause gadget represents a chosen clause
from our quantified Boolean formula, and Selector gates Sy, S5 and Sg are either open or closed depending
on whether their associated literal is true or not. Therefore, we can say that a Clause gadget is activated if

and only if any of Sy, S5 or Sg are open.

Property 4.12. The next gadget after a Clause gadget can be enabled if and only if the Clause gadget is

enabled and activated.

Justification. The next gadget after a Clause gadget is enabled by firing a bird into the traverse path of Sy,
Sy or S3. This shot will only enable the next gadget if Sy, S5 or Sg is open respectively. This means that at
least one of Sy, S5 or Sg must be open (i.e. the Clause gadget must be activated) in order for the player to

enable the next gadget. This obviously cannot be performed if the Clause gadget is disabled. O

To summarize, a player can only enable the next Clause gadget (or enable the Finish gadget if this is the
last Clause gadget) if at least one of the literals within the current Clause gadget is true, and thus the clause
is activated. Enabling the Finish gadget can therefore only be achieved if all Clause gadgets are activated by

the current combination of variable values (i.e. all clauses in the quantified Boolean formula are satisfied).

4.2.5. Finish Gadget

The structure of the Finish gadget implementation for ABED is shown in Figure 12. This gadget is
comprised of a Selector gate (S7) and an AUT gate (A4;), but the player cannot directly fire into either of
them. Traversing S can also be referred to as “passing through” the Finish gadget, and results in the level
being solved. The Finish gadget can exist in one of three states, enabled, disabled and unsolvable. The
Finish gadget is enabled if A; is open and S is open, disabled if A; is closed and S; is open, and unsolvable

if Sy is closed. The Finish gadget is initially disabled (A; is closed and S is open).

Property 4.13. The player can enable the first UQ-F gadget without making the level unsolvable, if and
only if the Finish gadget is enabled.

Justification. The three states that a Finish gadget can be in are all mutually exclusive. Also as there is no

way of opening Si, if the Finish gadget is ever in the unsolvable state then it can never be taken out of this

§11.2 Paper 137

state. Therefore, as traversing 57 is the only way to solve the level, if the Finish gadget is ever unsolvable
then the level is unsolvable. While closing S; does not immediately satisfy the loss condition for the level,
allowing the player to continue to make further shots, the player can no longer reach the win condition so
their loss is guaranteed (eventually the player will run out of birds). We can also observe that the Finish
gadget becomes disabled if and only if it is enabled and the first UQ-F gadget is enabled; and that the Finish
gadget becomes unsolvable if and only if it is disabled and the first UQ-F gadget is enabled. Therefore, the
only way for us to enable the first UQ-F gadget without making the level unsolvable is if the Finish gadget
is enabled. O

Essentially, as the Finish gadget can only be enabled if the last (and by extension all) Clause gadget(s)
are enabled and activated, coupled with the fact that opening the first UQ-F gadget disables all Clause
and Finish gadgets, we can ensure that the first UQ-F gadget can only be enabled directly after the Clause
gadgets have been checked for activation. Also, as the only way to solve the level to traverse S7, which can
only happen from the last UQ-F gadget, we can guarantee that all UQVCs are tested before the level can

be solved.

4.8. Level Construction

This section deals with the reduction process from any given quantified 3-CNF Boolean formula to an
equivalent ABED level description, using our previously described framework and gadgets. As Angry Birds
is a game that relies heavily on physics simulations to resolve player actions, the relative positions of the
gadgets is extremely important. Elements within the game are bound by the physics of their environment
and the only immediate control the player has is with regard to the shots they make. For this reason, it is

necessary to confirm that the gadgets described can be successfully arranged throughout the level space.
Lemma 4.14. Any given TQBF problem can be reduced to an ABED level description in polynomial time.

Proof. As each of the necessary gadgets can be created using a constant amount of space and elements, they
can also be described in polynomial time. Consequently, the only remaining requirement is that all gadgets
can be successfully arranged throughout the level in polynomial time, relative to the size of the quantified
3-CNF Boolean formula. As the number of gadgets required is clearly polynomial, it suffices to describe a
polynomial time method for determining the location of each gadget, as well as the level’s width, height,
slingshot position and number of birds.

Whilst the exact calculations for determining gadget positions for a given quantified Boolean formula can
be determined, they are exceptionally long and somewhat irrelevant to this proof. Instead we will simply
show that the tunnels out from each gadget can connect to their appropriate destinations in a polynomial
amount of space, and can therefore also be defined in polynomial time. The number of tunnels out of each
gadget type is constant, and the number of each gadget type is polynomial. Because of this, there are only

a polynomial number of tunnels to consider and each of these can always be connected to their appropriate

138 The Computational Complexity of Angry Birds

destination gadget using a polynomial amount of space. This means that the entire framework must also
be polynomial in size, and can therefore be described in polynomial time. We also know that there are a
polynomial number of entrance tunnels to these gadgets that the player can fire into, determined based on
the number of quantifier and clauses gadgets. Each of these entrance tunnels can simply start above the
framework (facing downwards) and then lead into the required gadget entrances. This allows us to define
the total width (Wr) of all entrance tunnels that the player can fire into, which is also polynomial in size.
Although the speed at which a bird can be fired from the slingshot is bounded (less than or equal to a
maximum velocity vys), we can still ensure that all gadgets are reachable from the slingshot by placing them
lower in the level. As there is no air resistance, the trajectory of a fired bird follows a simple parabolic curve

for projectile motion, y = x tan(¢) — 22, where vy is the initial velocity of the fired bird, ¢ is the

initial angle with which the bird was fired, and ¢ is the gravitational force of the level. While it is highly
likely that Angry Birds has a maximum speed that an element could possess, this is not addressed by the
formula given (i.e. we assume a theoretical worst case scenario of no terminal velocity). This means that in
order for us to ensure that all gadgets are reachable, they must be placed at a distance below the slingshot
equal to or greater than —Wp + %W% We can also use the same formula to calculate the maximum height

2
that a bird fired from the slingshot can reach, %. Using this we can set the position of the slingshot to

(0, 721’54) and place all entrance tunnels that the player can fire into the required distance below this in a
horizontal alignment against the left side of the level. In addition, we need to guarantee that there are
enough release points available to allow for a bird to be shot into any entrance tunnel for any gadget. To
ensure this, we simply move everything constructed so far W pixels to the right. Lastly, the number of birds
that the player has is equal to (C' + 2E + 3U)2Y (although often not this many are needed), where C'is the

number of clauses, E is the number of existential quantifiers, and U is the number of universal quantifiers,

within the given quantified Boolean formula. O

An example diagram of a fully constructed structure, using the same quantified Boolean formula as in
Figure 7, is shown in the Appendix (Figure A.24).
As we have constructed the necessary gadgets and can position them within the game’s environment in

polynomial time, the problem of solving levels for ABED is PSPACE-hard.

Theorem 4.15. The problem of solving levels for ABED is PSPACE-hard.

4.4. Winning Strategy (Example)

We now describe an example of a winning strategy for solving an ABED level description that has been
reduced from the same quantified Boolean formula as in Figure 7. For this level description, one strategy
that would solve the level would be to always set the value of x to positive, and always set the value of z to
negative, whenever the EQ gadget associated with each respective variable is enabled. The framework will
then be cycled four times, for each combination of values for y and w, giving the following variable value

combinations when the Clause gadgets are enabled:

§11.2 Paper 139

Framework cycle #1: x=1,y=1,2=0,w =1

Framework cycle #2: =1,y =1,z=0,w =0

Framework cycle #3: t =1,y =0,2=0,w =1

Framework cycle #4: =1,y =0,z =0,w =0

By comparing these variable values against our quantified Boolean formula, we can see that all clauses
are satisfied for each framework cycle, allowing us to enable the Finish gadget and begin the next framework
cycle. Essentially, this particular strategy ensures that all Clause gadgets for the given quantified Boolean
formula are activated for all UQVCs. As both universally quantified variables (y and w) are set to negative
on the fourth framework cycle, the fifth framework cycle will allow us to pass through the Finish gadget and
solve the level. Some quantified Boolean formulas can have multiple possible winning strategies (including
this example), or may require more sophisticated strategies where the player needs to change the value of

certain existentially quantified variables between framework cycles in order to solve the level.

4.5. In PSPACE

As we have already shown that ABED is PSPACE-hard, the only remaining requirement for completeness
is that it also be in PSPACE. The problem of solving levels for ABED can be defined as within PSPACE if
it is possible to solve any given level in polynomial space, relative to the size of the level’s description, and

that there are a finite number of states and strategies for solving any given level.
Lemma 4.16. Any given ABED level can be solved in polynomial space.

Proof. All game elements can be described using a polynomial amount of memory (e.g. position, velocity,
size, etc.), the size of a level does not increase (pre-defined out of bounds limits), no additional elements
are added to a level whilst playing (only removed), and every game element behaves deterministically based
on a function of the player’s actions. Because of this, the current state of a level can always be stored in
polynomial space. Thus, the state space of a level can be searched non-deterministically for any possible
solutions. This means that the problem is in NPSPACE. We can then use Savitch’s theorem [37] that
NPSPACE = PSPACE to conclude that the problem of solving levels for ABED is indeed in PSPACE. [

Lemma 4.17. There are a finite number of states and strategies for any given ABED level.

Proof. The state of a level is defined based on the current attribute values of all the elements within it. These
attribute values are all defined as rational numbers that each take up a finite amount of memory. Therefore,
it must also be possible to define the current state of any given level in a finite amount of memory. Thus,
the total number of states for any given level is finite. As the number of shots and release points for any
given level is polynomial, relative to the size of the level’s description, the number of possible strategies for

a level is also finite. O

140 The Computational Complexity of Angry Birds

XY W T

Clause
YWV

Kill Pig

Figure 13: General framework diagram for PSPACE-hardness (ABPS).

Thus, as ABED is both PSPACE-hard and in PSPACE, the problem of solving levels for ABED is
PSPACE-complete.

Theorem 4.18. The problem of solving levels for ABED is PSPACE-complete.

5. PSAPCE-Hardness (ABPS) (polynomial and stochastic)

5.1. Framework

Whilst the problem of solving levels for ABED has been proven PSPACE-complete, it is also possible to
show that solving levels for ABPS is PSPACE-hard. This version of Angry Birds no longer allows for an
exponential number of birds, but does feature a stochastic game engine. Our proof of PSPACE-hardness for
ABPS is based on the same TQBF problem as for ABED, and uses a very similar framework, see Figure 13
(also uses the same example quantified Boolean formula from Figure 7).

The EQ and Clause gadgets from the ABED proof remain the same, except that all Clause gadgets are
initially set up as if all universally quantified variables are negative. We no longer require UQ-F or Finish
gadgets, and UQ-T gadgets are replaced by a new Universal Quantifier Random (UQ-R) gadget. Each
UQ-R gadget has a non-zero and non-certain probability of setting the value of its associated variable to
positive when it is enabled. If all Clause gadgets are activated after the player has selected a value for each
existentially quantified variable, and the value for each universally quantified variable has been (randomly)
either set to positive or remains negative, then the player will be able to kill a single pig within the level
which replaces the Finish gadget. We also only need as many birds as there are variables and clauses within
the given quantified Boolean formula (i.e. the number of birds needed is polynomial).

Essentially, we are no longer testing out every possible UQVC, but are testing a single possible UQVC

that is selected at random. As our formal decision problem posed at the beginning of this paper was to

§11.2 Paper 141

Enabled by the

PLAYER previous gadget
FIRES A Enable the
BIRDS 1 next gadget
HERE
Modify Clause

gadgets (positive)

Figure 14: Structure of the Universal Quantifier Random (UQ-R) gadget.

determine if there exists a strategy that ALWAYS solves a given level, these two testing approaches are

equivalent (as long as the probability of selecting each possible UQVC is greater than zero).

5.2. Universal Quantifier Random (UQ-R) Gadget

The structure of the UQ-R gadget implementation for ABPS is shown in Figure 14. This gadget is
comprised of an AUT gate (A;) and a Random gate (R;), where (A;) has a traverse path which can be shot
into by the player. A UQ-R gadget is enabled if A; is open , otherwise it is disabled. This gadget behaves in
a similar manner to the UQ-T gadget from our ABED proof, except that instead of always setting the value

of the associated Boolean variable to positive it has a non-zero and non-certain probability of doing so.

Property 5.1. A UQ-R gadget has a non-zero and non-certain probability of setting the value of an asso-

ciated variable to positive, if and only if it is enabled.

Justification. Opening A; is the only way to enable the gadget, and doing this causes a bird to also enter
R;. This bird then has a non-zero probability of leaving R; through the left exit, but also has a non-zero
probability of not leaving R; (either by being trapped in the right exit or by remaining on the point inside
the gate). If the bird leaves R; through the left exit then the value of the associated variable is set to

positive. O

Properties and justifications for how the UQ-R gadget is disabled and how the next gadget is enabled
can be easily generalised from Section 4.2.2.

Essentially, as all Clause gadgets are initially configured as if all universally quantified variables are
negative, when the Clause gadgets are checked for activation there is a non-zero probability that each
universally quantified variable will remain negative, but also a non-zero probability that its value will have
been changed to positive (i.e. each UQVC has a chance greater than zero of being selected as the outcome).

As the framework for this proof is very similar to that for ABED, the gadgets can be arranged using
roughly the same process as described in Section 4.2.6, except that UQ-T gadgets are replaced by UQ-R
gadgets, and no UQ-F or Finish gadgets are necessary. An example diagram of a fully constructed structure,

using the same quantified Boolean formula as in Figure 13, is shown in the Appendix (Figure A.25).

142 The Computational Complexity of Angry Birds

Kill Pig

Figure 15: General framework diagram for NP-hardness (ABPD).

As we have constructed the necessary gadgets and can position them within the game’s environment in

polynomial time, the problem of solving levels for ABPS is PSPACE-hard.

Theorem 5.2. The problem of solving levels for ABPS is PSPACE-hard.

5.3. Winning Strategy (Example)

The same winning strategy that was used in Section 4.3 (z = 1,z = 0) can also be used here for the same
quantified Boolean formula, see Figure 13. In this case however the framework does not need to be cycled
multiple times to test each UQVC, but instead one of the four possible UQVCs will be randomly selected.
As all clauses remain satisfied for our strategy regardless of which UQVC is selected, we can guarantee that

the player will always be able to kill the pig and thus solve the level.

6. NP-Hardness (ABPD) (polynomial and deterministic)

6.1. Framework

By using a very similar framework to that used in the last two PSPACE-hard proofs, we can also show that
solving levels for ABPD is NP-hard. While this is the “weakest” complexity class that is proven in this paper,
this version of Angry birds allows for only a polynomial number of birds and features a deterministic physics
engine. Our proof of NP-hardness reduces from the NP-complete problem 3-SAT, which consists of deciding
whether a given 3-CNF Boolean formula is satisfiable. The framework we use for this proof is essentially a
reduced version of that used for the TQBF problem, see Figure 15, and is similar to that used for many past
platformer games [1, 17, 31]. Figure 15 uses the Boolean formula (xVyV z) A (mxVyV —2z) A(mxV -y V —z)
as an example.

Essentially any 3-CNF Boolean formula can be represented using our TQBF framework by simply making
all variables existentially quantified (i.e. the problem of making any 3-CNF Boolean formula true is equivalent

to determining if any existentially quantified 3-CNF Boolean formula is true). This removes the need for

§11.2 Paper 143

any UQ-F, UQ-T or Finish gadgets, relying only on the EQ and Clause gadgets (i.e. for each variable in the
Boolean formula there is an associated EQ gadget and for each clause in the Boolean formula there is an
associated Clause gadget). If all Clause gadgets are activated after the player has selected a value for each
variable, then the player will be able to kill a single pig within the level which replaces the Finish gadget.
We also only need as many birds as there are variables and clauses within the given Boolean formula.

As the framework for this proof is very similar to that for ABED, the gadgets can be arranged using
roughly the same process as described in Section 4.2.6, except that no UQ-f, UQ-T or Finish gadgets are
necessary. An example diagram of a fully constructed structure, using the same Boolean formula as in Figure
15, is shown in the Appendix (Figure A.26).

As we have constructed the necessary gadgets (although no new gadgets were added for this proof) and
can position them within the game’s environment in polynomial time, the problem of solving levels for ABPD

is NP-hard.
Theorem 6.1. The problem of solving levels for ABPD is NP-hard.

We should point out that an NP-hard proof for a version of Angry Birds which had a similar environment
to ABPD was previously presented by us in [38]. However, this proof also used “breakable blocks” in addition
to the other game elements mentioned in our requirements. This proof was arguably simpler than the one
which we present here, but due to the fact that it required additional game elements, we treat this new proof

as an improved alternative to that presented in [38§].

6.2. Winning Strategy (Example)

We now describe an example of a winning strategy for solving an ABPD level description that has been
reduced from the same quantified Boolean formula as in Figure 15. For this level description, one strategy
that would solve the level would be to set the value of x to positive, the value of y to positive, and the value
of z to negative. This will ensure that all Clause gadgets are activated, allowing us to kill the pig and solve

the level.

7. EXPTIME-Completeness (ABES) (exponential and stochastic)

7.1. EXPTIME-Complete Original Game

To show that solving levels for ABES is EXPTIME-hard we will reduce from a known EXPTIME-
complete decision problem. For our proof, we will use the problem of determining whether a player can force
a victory for the game G2, as shown in [39]. G2 is a game that is played between two people, with each
player attempting to win the game before the other player does. A full and formal definition of G2 can be
found in [39], but we provide here a simplified explanation of how it is played.

The game is setup as follows. Each player is given a separate 12-DNF Boolean formula which they are
attempting to make true. Each of the variables that are used in these Boolean formulas are assigned to

either player 1 or player 2. The initial values of the variables are also set to either positive or negative.

144 The Computational Complexity of Angry Birds

The game is played as follows. Each player takes turns making a move (starting with player 1), where
they can change the value of at most one variable assigned to them (changing the value of no variables is
referred to as “passing”). The first player to have their Boolean formula “true” after making a move wins
the game. This victory condition is equivalent to saying that whichever player’s Boolean formula is satisfied
first wins, but if both players’ Boolean formulas are satisfied simultaneously then the player that made the
most recent move wins.

If, after the game has been setup, a player can guarantee that they will win regardless of the other player’s
actions, then that player can force a victory, otherwise they cannot. Determining whether player 1 can force

a victory is the known EXPTIME-complete decision problem that we will be using for our proof.

G2 Formal Decision Problem
Instance: 12-DNF Boolean formula for each player, variable assignment, initial variable values.

Question: Can player 1 force a victory?

From this point on we will refer to player 1 as the “player” and player 2 as the “opponent”.

While many classical two-player games such as Chess, Go and Checkers contain the mechanics necessary
to mimic games such as G2, Angry Birds does not on first glance appear to be a suitable choice. Angry
Birds is a single-player game and so does not inherently feature an opponent, in the traditional sense, against
which to play. However, we can instead use the stochasticity of the physics engine as the opponent against
which we will be facing. This stochasticity allows us to create situations where the player is uncertain about
the exact outcome of shots that they make. By utilising this element of uncertainty in shot outcomes, we can
create a “random” opponent, that will make random moves after each of the player’s moves. Even though
an opponent that just makes random moves may seem very easy to beat, the complexity of determining
whether the player can force a victory for a given G2 instance is the same when facing both an opponent
that plays optimally and one that plays randomly, as it is always possible that the random opponent will,
by pure chance, actually play optimally (i.e. the player must assume Murphy’s Law). Even if the player can
beat a random opponent many times for a particular G2 instance, if there exists some small probability that
the player will not win then they cannot force a victory (i.e. guaranteeing victory against an opponent that
makes random moves is the same as against an opponent that plays perfectly). Exactly how this simulation
of a random opponent by our stochastic physics engine is achieved will be discussed in greater detail later.
All that needs to be understood now is that the decision problem we are considering involves determining
whether the player can force a victory (i.e. guarantee that they can always solve the level) without knowing

exactly how the game’s physics will respond to their actions.

7.2. Framework

For our proof of EXPTIME-hardness we describe a method of combining several new types of gadget
to create an ABES representation for any given setup of the game G2. A framework diagram showing how

these gadgets connect within the level space is shown in Figure 16, which uses the example Boolean formulas

§11.2 Paper 145

PLAYER FIRES BIRDS HERE

Ordering

Y
[Random] Choice
]

)

Clause (O)

Opponent's XVyv—z
Clause—
Gadgets

Clause (O)
“XVyV W)

4

Clause (P)
XV-oyvz

Player's
——Clause

Gadget
Clause (P) adgets

“XVyVw

Result

Figure 16: General framework diagram for EXPTIME-hardness.

(z Ay Az)V (—z Ay Aw) for the player and (x Ay A—z)V (—x Ay A—w) for the opponent. For each Clause
in either the player’s or opponent’s Boolean formula there is an associated Clause gadget. The framework
also contains an Ordering, Random, Choice and Result gadget, the purpose of which will be discussed later.

As there is no traditional opponent to make moves for themselves, we must design the level such that
the player is forced to make a move for the opponent after they have made their own move. The player first
makes their move by either changing the value of a variable assigned to them or by passing. The player can
then check whether their own Boolean formula is satisfied, although this is optional and not enforced by the
level’s design. The player is then forced to randomly change the value of a variable assigned to the opponent
(passing is also a possible outcome) and check whether the opponent’s Boolean formula is satisfied, before

they are allowed to make another move for themselves.

7.2.1. Gadget design requirements
The Ordering gadget ensures that the correct order of actions is followed by the player. Essentially, all

actions must be repeatedly performed in the following order:

1. The player makes their move (can effectively skip this step by passing).

146 The Computational Complexity of Angry Birds

2. The player checks whether their Boolean formula is satisfied (can skip this step).

3. The player makes a random move for the opponent (cannot skip but passing may occur as a random

possibility).
4. The player checks whether the opponent’s Boolean formula is satisfied (cannot skip this step).

The Choice gadget allows the player to make a single choice about which of their assigned variables to
change the value of during their move. The player should also have the option to pass if they do not wish to
change the value of a variable. When a bird enters the Choice gadget via the Ordering gadget, the location
at which it will exit is based on this choice made by the player. Depending on where the bird exits, the value
of a single variable assigned to the player will either be changed or kept the same (pass).

The Random gadget makes a random choice between multiple options, based on the stochasticity of the
game engine. When a bird enters the Random gadget there are several possible locations where it can exit,
each of which has a probability of occurring that is greater than zero. Depending on where the bird exits,
the value of a single variable assigned to the opponent will either be changed or kept the same (pass).

Each Clause gadget represents a specific clause from either the player’s or opponent’s Boolean formula,
and is “activated” if its associated clause is satisfied (i.e. all literals within the associated clause are true).
This means that checking if either the player’s or opponent’s Boolean formula is satisfied, is equivalent to
checking if any of their associated Clause gadgets are activated. If any of their associated Clause gadgets are
activated during this checking step, then a bird will travel into the Result gadget. Notions off “first”, “last”,
“next” and “previous” Clause gadget are the same as for Section 4.1.

The Result gadget is used to decide whether the level has been won or lost, depending on if the player’s
or opponent’s Boolean formula is satisfied first after they have made a move. If the player’s Boolean formula
is satisfied first, then the player can travel to the Result gadget from one of their activated Clause gadgets,
allowing them to “pass through” the Result gadget and win the level. If the opponent’s Boolean formula
is satisfied first, then the player will be forced to travel to the Result gadget from one of the opponent’s
activated Clause gadgets, which will then close the Result gadget and prevent the player from ever being
able to pass through it in the future (i.e. makes the level unsolvable). Essentially, the location and outcome
of the first bird to enter the Result gadget depends on whether it came from one of the player’s or opponent’s

Clause gadgets.

7.2.2. Framework design requirements

The player fires a bird into the Ordering gadget to make the majority of actions, as well as into the Choice
gadget to dictate which of their assigned variables they want to change the value of for their next move. For
our general framework diagram (Figure 16), an arrow into the left side of a Clause gadget indicates that the
value of a variable is being changed, while an arrow into the right side indicates that the Clause gadget is

being checked for activation (i.e. check if associated clause is satisfied). The arrow into the left side of the

§11.2 Paper 147

Result gadget signifies that the level is lost (unsolvable), while the arrow into the right side signifies that the
level is won (solved). Lastly, the arrow into the left side of the Choice gadget carries out the player’s chosen
move, while the arrow into the right side allows the player to specify the move they wish to make next.
This means that solving the level is equivalent to winning a game of G2 (against a random opponent).
Thus, we can show that ABES is EXPTIME-hard if the required gadgets can be successfully implemented
within the game’s environment and the reduction from G2 setup to level description can be achieved in

polynomial time.

7.8. EXPTIME-Hardness

This section deals with the implementation and arrangement of the necessary framework gadgets for the
ABES game environment, as well as the reduction process from any given setup of G2 to an equivalent ABES

level description.

7.8.1. Ordering Gadget

The purpose of the Ordering gadget is to ensure that all actions are carried out in the correct order. The
structure of the Ordering gadget implementation for ABES is shown in Figure 17. This gadget is comprised
of two Selector gates (S7,S2) and an AUT gate (A1). A; and S; are initially open while Sy is initially closed.
There are four entry points to the Ordering gadget (X,Y, Z, W) and four exit points (B, G, P, R). The exit
point for a given entry point is determined based on whether the gates within the Ordering gadget are open
or closed. Each exit point leads to the following gadgets/actions: B to the Choice gadget (player makes
their move), R to the Random gadget (make a random move for the opponent), P to the player’s Clause
gadgets (check whether the player’s Boolean formula is satisfied), and G to the opponent’s Clause gadgets
(check whether the opponent’s Boolean formula is satisfied). A deterministic finite state machine (DFSM)
showing the relations between gate states, entry points and exit points is shown in Figure 18. (note that the
exit points are shown in their corresponding colours to make the diagram easier to understand; black arrows
indicate that the bird did not leave the Ordering gadget).

Due to the fact that both the player and opponent can pass as a possible move, and that the player does
not have to check whether their Boolean formula is satisfied after making their move, we can ensure that

the correct order of actions is followed if the following two properties hold.

Property 7.1. If the player makes a move, they must make a random move for the opponent and then check

whether the opponent’s Boolean formula is satisfied, before they can make another move.

Justification. Using the DFSM in Figure 18, we can see that after traversing the Blue arrow (bird exits via
point B) we must also traverse a red arrow (bird exits via point R) followed by a green arrow (bird exits
via point G) before the blue arrow can be traversed again. Note that it is also possible for the player to
traverse the red and/or green arrows multiple times before traversing the blue arrow again, but as both the

player and opponent have passing as a possible move, there is no issue with this (any duplicate opponent

148 The Computational Complexity of Angry Birds

A4 open
S closed
S, closed

7 A4 closed W
Y({ Siclosed))w
S, closed

Figure 18: DFSM for actions performed in Ordering gadget.
Figure 17: Model of the Ordering gadget used.

moves can simply be treated as the player passing, and as the opponent can potentially pass their move as
a random outcome we only need to check if the opponent’s Boolean formula is satisfied if the player didn’t

pass on their previous move). O

Property 7.2. If the player makes a random move for the opponent, they must check whether the opponent’s

Boolean formula is satisfied, before they can check if the player’s Boolean formula is satisfied.

Justification. Again using the DFSM in Figure 18, we can see that after traversing a red arrow we must also
traverse a green arrow before we can traverse the purple arrow (bird exits via point P). This essentially
ensures that the player is only able to check if their Boolean formula is satisfied between making their own

move and making a random move for the opponent. O

7.8.2. Choice Gadget

The purpose of the Choice gadget is to allow the player to make a decision about which of their assigned
variables to change the value of. An example of a Choice gadget implementation for ABES with four possible
exit points is shown in Figure 19. This gadget is comprised of a sequence of AUT gates (A, Aa, As,...,
Aav,); where V,, is the number of variables assigned to the player). Each AUT gate is associated with a
particular value for one of the player’s variables (i.e. a literal). The player can directly open any AUT gate
within the Choice gadget at any time, and a bird attempts to traverse this sequence of AUT gates whenever

it leaves the Ordering gadget from exit B.

Property 7.3. The Choice gadget can be used to indicate one of the player’s variables to change the value

of (i.e. which literal to make true).

Justification. The first AUT gate in the sequence that is closed represents the literal that the player wishes

to make true. For the example shown, the player wished to choose the literal represented by the third

§11.2 Paper 149

PLAYER FIRES

From exit BIRDS HERE
B of the

Ordering
gadget

Modify Clause gadgets

Figure 19: Example model of a Choice gadget with four possible outcomes.

AUT gate, so has opened all the other AUT gates before it. Essentially, when a bird attempts to traverse
this sequence of AUT gates, the first AUT gate that it is unable to traverse represents the selection of its

associated literal to make true.]

Property 7.4. A bird which enters the Choice gadget from exit B of the Ordering gadget, will exit the
Choice gadget at a location unique to the literal selected by the player.

Justification. Whilst, the player can open any number of AUT gates within the Choice gadget, they can
only be traversed from exit B of the Ordering gadget. If an AUT gate is open then a bird can traverse it
(closing the AUT gate in the process) and then attempt to traverse the next AUT gate in the sequence. The
first AUT gate in this sequence that is closed will prevent the bird from being able to traverse it, meaning it
will instead leave the AUT gate at exit T3. The bird will then travel into the Clause gadgets and make the
desired change, based on the literal associated with this closed AUT gate. The T3 exit for each AUT gate in
this gadget essentially represents a unique literal that the player can make true during their move, and so

the location where a bird exits the gadget is unique to the literal chosen. O

In summary, the player can determine the exit point for any bird that enters the Choice gadget from exit
B of the Ordering gadget, by opening all AUT gates before the desired exit point. Each exit point from the
Choice gadget then sets the literal associated with its AUT gate to true for both the player’s and opponent’s
Clause gadgets.

Property 7.5. The player can pass if they do not wish to change the value of any of their assigned variables.

Justification. A pass can be made either by selecting a literal that is already true, or by opening all AUT
gates in the Choice gadget. O

Property 7.6. The width and height of the Choice gadget, as well as the number of game elements it

contains, is polynomial with respect to the number of variables assigned to the player.

150 The Computational Complexity of Angry Birds

From exit R of the
Ordering gadget

R\
RN RN

Modify Clause gadgets

Figure 20: Example model of a Random gadget with four possible outcomes.

Justification. Let Ay, Ay and Ag be constants representing the width, height and number of elements
(respectively) for an AUT gate. The width, height and number of elements for a Choice gadget is therefore
bounded by the polynomial expressions (2V,)Aw, (2V,)Ag and (2V,)Ag respectively. O

7.8.3. Random Gadget

The purpose of the Random gadget is to randomly select one of several options, each of which is associated
with a particular value for one of the opponent’s variables (i.e. the Random gadget uses the inherent
uncertainty in the outcome of collisions to make a random move for the opponent). Each of these options
should have a probability greater than one of occurring, and the player cannot be allowed to influence or
know the outcome of the Random gadget in advance. An example of a Random gadget implementation for
ABES with four possible exit points is shown in Figure 20. This gadget is comprised of multiple Random
gates (Ri, Ra, Rs,..., Rav,—1)), where V, is the number of variables assigned to the opponent, that are
arranged in a Binary tree fashion. The first row has one Random gate, then the next two, then four, and so
on. A bird enters at the top of this tree of Random gates whenever it leaves the Ordering gadget from exit

R.

Property 7.7. The Random gadget can be used to randomly select one of the opponent’s variables to change

the value of (i.e. which literal to make true) or pass, using the stochasticity of the game engine.

Justification. As any bird which enters a Random gate has a probability greater than zero of leaving the
Random gate at either exit point, then regardless of how many Random gates the bird interacts with inside
our Random gadget, the probability of the bird leaving the Random gadget at any specific exit point is also
greater than zero (i.e. by combining together multiple Random gates, it is possible to create a Random
gadget that can select between any number of different options). Note that if the bird remains on any point
within the Random gadget, then this can simply be treated as a pass. Each exit point from the Random

gadget is associated with a particular literal for one of the opponent’s variables. The bird will then travel

§11.2 Paper 151

into the Clause gadgets and make the desired change, based on the literal associated with the exit point.
If the literal associated with the bird’s exit point is already true then nothing will change (treated as a

pass). O

In summary, any bird that enters the Random gadget from exit R of the Ordering gadget has a probability
greater than zero of leaving the gadget at any specific exit point. Each exit point from the Random gadget

then sets the literal associated with it to true for both the player’s and opponent’s Clause gadgets.

Property 7.8. The width and height of the Random gadget, as well as the number of game elements it

contains, is polynomial with respect to the number of variables assigned to the opponent.

Justification. Let Ry, Ry and Rg be constants representing the width, height and number of elements
(respectively) for a Random gate. The width, height and number of elements for a Random gadget is

therefore bounded by the polynomial expressions (2V,—1)Rw, (2V,—1)Ry and (2V,—1) Rg respectively. [

7.8.4. Clause Gadget

The purpose of the Clause gadget is to represent a single associated clause from either the player’s or
opponent’s Boolean formula, and is activated if the clause is satisfied. An example of a Clause gadget
implementation for ABES is shown in Figure 21. This gadget is comprised of a sequence of Selector gates
(S1, Sa, S3,..., S), where L is the number of literals within its associated clause (maximum of 12). Each of
these Selector gates represents a literal from the associated Clause, and is either open or closed depending
on whether their associated literal is true or not. Therefore, we can say that a Clause gadget is activated if
and only if all Selector gates within it are open.

Figure 22 also provides an example of how multiple Clause gadgets can be combined to represent a
complete Boolean formula, in this case for the Boolean formula (X AY)V (=X A =Y) (i.e. two Clause
gadgets which each contain two Selector gates). For this example, the value of X is negative whilst the value
of Y is positive. There are five points of entry to the first Clause gadget and the purpose of these different
entry points is as follows (starting from the leftmost entry point): check whether any Clause gadgets are
activated (if so then bird travels to the Result gadget), set the value of X to positive, set the value of X to
negative, set the value of Y to positive, set the value of Y to negative. This arrangement ensures that we
can check if any number of Clause gadgets are activated using a single bird.

Whenever the Random or Choice gadget is used to set the value of a variable (exit paths labelled as
“modify Clause gadgets”), a bird will travel through all the Clause gadgets for both the player and opponent
that contain that variable, opening the Selector gates that represent the literal chosen and closing those that
represent the negation of it (similar reasoning and setup to the Clause gadget description in Section 4.2.4

for our PSPACE-hard proofs).

Property 7.9. The Result gadget can be reached from a specific Clause gadget if and only if the Clause
gadget is activated

152 The Computational Complexity of Angry Birds

. Check if clauses are From paths
Check if clauses satisfied (from exit G or P | labelled as 'modify

are satisfied (from 'r:rgg:f;gzzib::j(g’;z' of the Ordering gadget) Clause gadgets'
exit G or P of the 3

Ordering gadget) i
Clause
gadget #1
xvy)
Clause :
gadget #2 :
(xV-y) :
Check next vY A Travel to : Travel to
Clause gadget| To other Clause gadgets with the Result feees Result
i i i adget
(unless last) same variable (if any more exist) gadg v gadget
Figure 21: Example model of a Clause gadget for a Clause with Figure 22: Example tunnel connection diagram for two
three literals. Clause gadgets with two literals each.

Justification. The Result gadget can only be reached from a Clause gadget if a bird is able to traverse every
Selector gate within it. As this is clearly only possible if all Selector gates are open, the Clause gadget must

be activated for a bird to reach the Result gadget from it. O

To summarize, each time that we are checking if either the player’s or opponent’s Boolean formula is
satisfied, we are actually sequentially checking if any of the Clause gadgets associated with clauses from their
respective Boolean formulas are activated. If any of these Clause gadgets are activated, then a bird will be
able to travel to the Result gadget. The location that the bird enters the Result gadget depends on whether
the activated Clause gadget that it successfully travelled through was associated with a clause from either

the player’s or opponent’s Boolean formula.

Property 7.10. The width and height of a Clause gadget, as well as the number of game elements it contains,

is bounded by a maximum value.

Justification. The maximum number of Selector gates that a Clause gadget can contain is 12, as this is
the maximum number of literals allowed within a clause for a 12-DNF Boolean formula. Therefore, as the
width, height and number of elements for of each Selector gate is constant, the width, height and number of
elements for a Clause gadget is bounded by the width, height and number of elements for a Clause gadget

containing 12 Selector gates (largest Clause gadget possible). O

7.8.5. Result Gadget
The purpose of the Result gadget is to either solve the level or make the level unsolvable, depending
on whether the player’s or opponent’s Boolean formula was satisfied first after making their move. The

structure of the Result gadget implementation for ABES is shown in Figure 23. This gadget is comprised

§11.2 Paper 153

Player loses
(one of opponent's
Player wins Clause gadgets
(one of player's clause was activated)

gadgets was activated

)
84— Kill Pig

Figure 23: Model of the Result gadget used.

of a single Selector gate (S7) that is initially in the open position. Traversing S; can also be referred to as

passing through the Finish gadget, and results in the level being solved.

Property 7.11. The entry point of the first bird to enter the Result gadget will either solve the level or

make it unsolvalbe.

Justification. If the first bird to enter the Result gadget traverses Sp, then the bird will kill the pig and solve
the level. If the first bird to enter the Result gadget closes Si, then the pig can never be killed and the level

becomes unsolvable. O

Because of this, we can simply connect the tunnels so that any bird which enters the Result gadget from
one of the player’s activated Clause gadgets attempts to traverse Sp (i.e. attempts to pass through the Result
gadget), and any bird which enters the Result gadget from one of the opponent’s activated Clause gadgets

closes S (i.e. makes the level unsolvable).

7.8.6. Level Construction
Now that all the necessary gadgets have been described, the only remaining requirement is that they can

be successfully arranged throughout the level space.
Lemma 7.12. Any given game of G2 can be reduced to an ABES level definition in polynomial time.

Proof. As we have already shown that each of the necessary gadgets can be created using a polynomial
amount of space and elements, and can therefore also be described in polynomial time, the only remaining
requirement is that all the gadgets can be successfully arranged throughout the level in polynomial time,
relative to the size of the G2 setup description (two 12-DNF Boolean formulas, variable assignment and
initial variable values). As the number of gadgets required is clearly polynomial, it suffices to describe a
polynomial time method for determining the location of each gadget, as well as the level’s width, height,
slingshot position and number of birds.

By using the same reasoning as in our PSPACE-hard level construction (Lemma 4.14), we know that the
time required to compute the relative placement (spatial arrangement) of these gadgets, as well as the space
between them, is polynomial relative to the total number of gadgets. There are also always a polynomial

number of tunnels between gadgets and each tunnel can always be connected to its appropriate destination

154 The Computational Complexity of Angry Birds

in polynomial time. Because of this, we can be certain than an equivalent ABES level description for any
given game of G2 can always be created in a polynomial amount of space, relative to the length of the
original Boolean formulas, and thus it can also be defined in polynomial time. All calculations for slingshot
position, release points needed, level’s width/height, etc., can be calculated the same as in Section 4.2.6.
Lastly, the number of birds the player has is equal to (2V}, + 4)(2"¥), where V,, is equal to the total
number of variables assigned to the player, and Vy is equal to the total number of variables assigned to both
the player and the opponent. This is equivalent to the maximum number of birds required to make a move
for both the player and opponent (four birds needed for the Ordering gadget, as well as 2V}, possible literal
options in the Choice gadget), multiplied by the maximum number of possible value combinations for all
variables (2V%). If the player cannot win the level in this many birds, then at least one of the variable value

combinations has been repeated. O

An example diagram of a fully constructed structure, using the same Boolean formula as in Figure 16,
is shown in the Appendix (Figure A.27). For this example, the player is assigned the variables z and w, the
opponent is assigned the variables x and y, and all variables are initially given a negative truth value.

As we have constructed the necessary gadgets and can position them within the game’s environment in

polynomial time, the problem of solving levels for ABES is EXPTIME-hard.

Theorem 7.13. The problem of solving levels for ABES is EXPTIME-hard.

7.4. Winning Strategy (Example)

We now describe an example of a winning strategy for solving an ABES level description that has been
reduced from the Boolean formulas for the player and opponent given in Figure 16. For this example, the
player is assigned the variables z and w, the opponent is assigned the variables = and y, and all variables
are initially given a negative truth value (same setup as for the example structure diagram in Figure A.27).
For this level description, we can see that the player will immediately need to set the value of w to positive.
If the player doesn’t do this then there is a chance that variable y would be changed to positive when the
opponent makes their move, which would mean that the opponent’s second clause would be satisfied (leading
to a loss). To set the variable w to positive we need to open all AUT gates in the Choice gadget except
for the last one. We can then traverse the AUT gates in the Choice gadget via the Ordering gadget, which
will subsequently adjust the Clause gadgets to represent w now being positive. We then need to make a
random move for the opponent, and check if any of their associated Clause gadgets are activated (none of
them are regardless of the outcome of the opponent’s random move). After this, we should see that we only
need to set the value of the variable z to positive to satisfy one of our clauses. This is the case regardless of
what move was previously made for the opponent, although the specific clause that is satisfied might change.
After setting z to positive we can then check our clauses for satisfiability, and as one of our Clause gadgets

is activated a bird will pass through the Result gadget and solve the level.

§11.2 Paper 155

7.5. In EXPTIME

As we have already shown that ABES is EXPTIME-hard, the only remaining requirement for complete-
ness is that it also be in EXPTIME. The problem of solving levels for ABES can be defined as within
EXPTIME if it is possible to solve any given level in exponential time, relative to the size of the level’s
description, and that there are a finite number of states and strategies for solving any given level (proof of

this same as Lemma 4.17).
Lemma 7.14. Any given ABES level can be solved in exponential time.

Proof. Every ABES level has at most an exponential number of possible states relative to its size. Thus, an

exponential time algorithm can simply enumerate through all possibilities until it finds a solution. O

Thus, as ABES is both EXPTIME-hard and in EXPTIME, the problem of solving levels for ABES is
EXPTIME-complete.

Theorem 7.15. The problem of solving levels for ABES is EXPTIME-complete

8. Proof Generalisation

The complexity proofs described in this paper can be replicated in many other games similar to Angry
Birds, as long as the necessary gadgets can be constructed. In general, this means that the computational
complexity of any physics-based game can be established using our frameworks, as long as the following
requirements hold. A level within the game contains a set number of targets, which the player needs to
hit or reach in order to solve the level. The game contains both static and non-static elements. The game
contains elements that can be moved as a result of the player’s actions. The physics engine utilised by the
game allows for rudimentary systems of gravity, momentum, energy transfer and rotational motion (almost
all simple physics engines should contain this). The player cannot directly influence any element within
a gadget framework, instead only being able to interact with it through the use of a secondary non-static
game element (in our case a bird), which enters the gadget framework through designated entry points. No
new element can enter this framework until the outcome of any previously entered element is finalised. For
our EXPTIME-hardness proof, we also require the exact outcome of certain player actions to be unknown
beforehand.

Whilst by no means applicable to all games that contain these features, this generalisation allows us
to show that many other physics-based games are NP-hard and/or PSPACE-complete. This includes both
games that are similar in play style to Angry Birds, such as Crush the Castle, Siege Hero or Fragger, as well
as games that play considerably differently, such as Where’s My Water, World of Goo, Bad Piggies, Cut
the Rope 2, Crayon Physics Deluxe, The Incredible Machine, Eets and Peggle, to name just a few. Even
though formal proofs on the complexity of these games would likely be each as long as this paper again, we

provide below some rough outlines of how single-use EQ and Clause gadgets could be implemented for several

156 The Computational Complexity of Angry Birds

popular examples of other physics-based games. Single-use EQ gadgets can only be used to set the value
of their associated variable once, while single-use Clause gadgets remain activated once they are activated
the first time (i.e. can’t be un-activated). While these single-use gadgets are much less sophisticated than
those we presented previously, they can still be used for NP-hardness proofs based on our 3-SAT reduction

framework as only a single framework cycle is needed.

8.1. Where’s My Water

The aim of this game is to get a certain number of water droplets into a specific destination pipe.

EQ gadget: Each EQ gadget contains a single water droplet, and two possible tunnels on either side of
it that are blocked by dirt. The player can remove this dirt by tapping on it, allowing them to direct the
water droplet into either tunnel. Whichever tunnel the player directs the water droplet into indicates the
value to set the associated variable to (i.e. if the water droplet falls into the left/right tunnel then set the
value of the variable to negative/positive). As there is only one water droplet in each EQ gadget, the player
can only set the value of the associated variable once (i.e. this EQ gadget is single-use only).

Clause gadget: Each Clause gadget contains a button that when touched by a water droplet, releases
a set number of water droplets into the destination pipe. When the player indicates the truth value for a
variable using its associated EQ gadget, the water droplet will travel through all the Clause gadgets that
contain the chosen literal, pressing the button within any Clause gadget it travels through (i.e. pressing
the button within a Clause gadget will essentially activate it). As the effect of pressing the button within a
Clause gadget cannot be undone, these Clause gadgets are single-use only.

Crossover gate: The game also features pipes that allow water droplets to pass each other without any
risk of leakage or collision, so no Crossover gates are needed.

Victory condition: The level is solved once all Clause gadgets have released their water droplets into

this destination pipe (i.e. when all Clause gadgets are activated).

8.2. Cut the Rope 2

The aim of this game is to transport a piece of candy to a stationary creature.

EQ gadget: Each EQ gadget contains a wooden ball that is suspended in place by two balloons, and two
possible tunnels on either side of the wooden ball. The player can “pop” each of these balloons by tapping it,
which removes the balloon from the level. The order in which the two balloons suspending the wooden ball
are popped can be used to direct the wooden ball into either tunnel. Whichever tunnel the player directs
the wooden ball into indicates the value to set the associated variable to. As there is only one wooden ball
in each EQ gadget, the player can only set the value of the associated variable once.

Clause gadget: Each Clause gadget contains a button that when touched by a wooden ball, opens a
rotating door (gear attached to a wooden block) outside of the framework. When the player indicates the

truth value for a variable using its associated EQ gadget, the wooden ball will travel through all the Clause

§11.2 Paper 157

gadgets that contain the chosen literal, pressing the button within any Clause gadget it travels through (i.e.
activates the Clause gadget).

Crossover gate: Crossover gates can be constructed using the exact same design as for Angry Birds
(Section 3.3).

Victory condition: The piece of candy is suspended by a balloon above a stack of rotating doors placed
outside the rest of the framework. Each rotating door in this stack is turned on when one of the Clause
gadgets is activated (i.e. each button in a Clause gadget turns on one of these rotating doors). The creature
is placed below this stack or rotating doors. The player can pop the balloon suspending the piece of candy
at any point, but the candy can only reach the creature (i.e. solve the level) if all rotating doors are turned

on (i.e. if all Clause gadgets are activated).

8.3. The Incredible Machine

The aim of this game is to accomplish some predefined task for a given environment by placing objects
within the level. For our setup, the only objects that the player can place in the level are candles.

EQ gadget: Each EQ gadget contains a baseball, and two possible tunnels on either side of it that are
blocked by brick walls. TNT is placed next to each of these brick walls and can be ignited by placing a
candle next to it. When a TNT is ignited it will explode and destroy (remove) both itself and the brick
wall next to it. Igniting one of these TNTs can therefore be used to direct the baseball into either tunnel.
Whichever tunnel the player directs the baseball into indicates the value to set the associated variable to.
As there is only one baseball in each EQ gadget, the player can only set the value of the associated variable
once.

Clause gadget: Each Clause gadget contains some object that can be turned on by hitting it (e.g. a
torch). When the player indicates the truth value for a variable using its associated EQ gadget, the baseball
will travel through all the Clause gadgets that contain the chosen literal, turning on the object within any
Clause gadget it travels through (i.e. activates the Clause gadget).

Crossover gate: The game also features pipes that allow baseballs to pass each other without any risk
of leakage or collision, so no Crossover gates are needed.

Victory condition: The requirement for solving the level is set to turning on all of the objects within

the Clause gadgets (i.e. when all Clause gadgets are activated).

While proofs for NP-hardness and PSPACE-hardness can often be generalised between different video
games, our proposed proof of EXPTIME-hardness is trickier to replicate. We postulate though that it
might be possible to prove that extended versions of other popular games such as Super Mario Bros. are
EXPTIME-complete by introducing elements such as “mystery” boxes which could spawn a random item,
thus providing the necessary uncertainty in player actions. However, a more thorough investigation and

research would be needed to determine if this is possible.

158 The Computational Complexity of Angry Birds

9. Conclusions

In this paper, we have successfully proven that the task of deciding whether a given Angry Birds level
can be solved is either NP-hard, PSPACE-hard, PSPACE-complete or EXPTIME-complete, depending
on the version of the game being used. Proof of NP-hardness was by reduction from 3-SAT, proof of
PSPACE-hardness was by reduction from TQBF, and proof of EXPTIME-hardness was by reduction from
the EXPTIME-complete game G2. We were also able to demonstrate that different variants of the base
Angry Birds game were members of the corresponding complexity classes required to extend these defini-
tions from hardness to completeness (deterministic variants are in PSPACE whilst stochastic variants are in
EXPTIME).

To the best of our knowledge, this is the first example of a single-player game without a traditional
opponent being proved EXPTIME-complete. Our use of unknown and changing environmental variables as
the opponent against which the player is facing, is a unique view on the problem and opens up the possibility
of proving many other games EXPTIME-complete using this methodology. The most likely candidates for
this analysis would be games that feature some inherent stochasticity in their engine (similar to the method
employed for our proof), or else which use randomness within one of their gameplay elements (such as
mystery/question blocks in Mario games). In games like this the player may know what elements the box
could contain, but will not know exactly what it does contain until after they open it. This would be a
good basis for constructing an opponent for a reduction from G2 or another similar EXPTIME-complete
game. It is also possible to use the inaccuracy of the player’s input or another similar area of uncertainty to
generate the required randomness. EXPTIME-hardness proofs might also be able to be applied to real-world
environments, although EXPTIME membership does not hold as the real world likely possesses an infinite
number of states.

This work provides a substantial contribution to the collection of games that have been investigated
within the field of computational complexity. However, there is still a huge assortment of physics-based
and other non-traditional puzzle games that are available for future analysis, which do not follow the typical
structure of those previously studied. The importance of games for Al research lies in the fact that games can
form a simplified and controlled environment, which allows for the development and testing of Al methods
that will eventually be used in the real world. It is also highly likely that the proofs presented in this paper
can be generalised to other physical reasoning and AI problems. Even though Angry Birds may initially seem
like a simple game, the challenges that dealing with its physics simulation engine poses make it incredibly
relevant to those in the real world. We are therefore hopeful that this work will inspire future research into

a more diverse range of game types and problems.

§11.2 Paper 159

References

1]

2]

[3]
4]

[5]
[6]

7]
18]

19]

[10]

[11]

[12]

[13]

[14]

G. Aloupis, E. D. Demaine, A. Guo, G. Viglietta, Classic Nintendo games are (computationally) hard,
in: Proceedings of the 7th International Conference on Fun with Algorithms, 2014, pp. 40-51.

M. Forisek, Computational complexity of two-dimensional platform games, in: Proceedings of the 5th

International Conference on Fun with Algorithms, 2010, pp. 214-227.
G. Kendall, A. Parkes, K. Spoerer, A survey of NP-complete puzzles, ICGA Journal 31 (2008) 13-34.

G. Viglietta, Gaming is a hard job, but someone has to do it!, Theory of Computing Systems 54 (2014)
595-621.

Angry birds game, https://www.angrybirds.com/games/angry-birds/, accessed: 2017-08-11.

J. Renz, AIBIRDS: The Angry Birds artificial intelligence competition, in: Proceedings of the 29th
AAAT Conference, 2015, pp. 4326-4327.

J. Renz, X. Ge, S. Gould, P. Zhang, The Angry Birds AI competition, AT Magazine 36 (2) (2015) 85-87.

P. A. Walega, M. Zawidzki, T. Lechowski, Qualitative physics in Angry Birds, IEEE Transactions on
Computational Intelligence and AI in Games 8 (2) (2016) 152-165.

M. Polceanu, C. Buche, Towards a theory-of-mind-inspired generic decision-making framework, in: 1J-

CAI Symposium on Al in Angry Birds, 2013, pp. 1-7.

S. Schiffer, M. Jourenko, G. Lakemeyer, Akbaba: An agent for the Angry Birds AI challenge based on
search and simulation, IEEE Transactions on Computational Intelligence and AT in Games 8 (2) (2016)

116-127.

F. Calimeri, M. Fink, S. Germano, A. Humenberger, G. Ianni, C. Redl, D. Stepanova, A. Tucci, A. Wim-
mer, Angry-HEX: An artificial player for Angry Birds based on declarative knowledge bases, IEEE
Transactions on Computational Intelligence and AI in Games 8 (2) (2016) 128-139.

S. Dasgupta, S. Vaghela, V. Modi, H. Kanakia, s-Birds Avengers: A dynamic heuristic engine-based
agent for the Angry Birds problem, IEEE Transactions on Computational Intelligence and Al in Games
8 (2) (2016) 140-151.

N. Tzortziotis, G. Papagiannis, K. Blekas, A bayesian ensemble regression framework on the Angry

Birds game, IEEE Transactions on Computational Intelligence and Al in Games 8 (2) (2016) 104-115.

A. Narayan-Chen, L. Xu, J. Shavlik, An empirical evaluation of machine learning approaches for Angry

Birds, in: IJCAI Symposium on Al in Angry Birds, 2013, pp. 1-7.

160 The Computational Complexity of Angry Birds

[15] P. Zhang, J. Renz, Qualitative spatial representation and reasoning in Angry Birds: The extended
rectangle algebra, in: Proceedings of the Fourteenth International Conference on Principles of Knowledge

Representation and Reasoning, KR’14, 2014, pp. 378-387.

[16] G. Cormode, The hardness of the Lemmings game, or oh no, more NP-completeness proofs, in: Pro-

ceedings of the 3rd International Conference on Fun with Algorithms, 2004, pp. 65-76.

[17] E. D. Demaine, J. Lockhart, J. Lynch, The computational complexity of Portal and other 3D video
games, CoRR arXiv:1611.10319 (2016) 1-24.

[18] T. Walsh, Candy Crush is NP-hard, CoRR arXiv:1403.1911 (2014) 1-10.

[19] L. Guala, S. Leucci, E. Natale, Bejeweled, Candy Crush and other match-three games are (NP-)hard,
in: Proceedings of the 2014 IEEE Conference on Computational Intelligence and Games, 2014, pp. 1-8.

[20] R. Kaye, Minesweeper is NP-complete, The Mathematical Intelligence 22 (2000) 9-15.

[21] E. D. Demaine, S. Hohenberger, D. Liben-Nowell, Tetris is hard, even to approximate, in: Computing
and Combinatorics, 9th Annual International Conference, 2003, pp. 351-363.

[22] E. D. Demaine, G. Viglietta, A. Williams, Super Mario Bros. is harder/easier than we thought, in:
Proceedings of the 8th International Conference on Fun with Algorithms, 2016, pp. 1-15.

[23] G. W. Flake, E. B. Baum, Rush hour is pspace-complete, or why you should generously tip parking lot
attendants, Theoretical Computer Science 270 (1) (2002) 895 — 911.

[24] J. Bosboom, E. D. Demaine, A. Hesterberg, J. Lynch, E. Waingarten, Mario kart is hard, in: MIT Open
Access Articles, 2018, pp. 1-12.

[25] L. Hamilton, Braid is undecidable, CoRR arXiv:1412.0784 (2014) 1 — 17.

[26] A. S. Fraenkel, D. Lichtenstein, Computing a perfect strategy for n x n chess requires time exponential

in n, Journal of Combinatorial Theory, Series A 31 (2) (1981) 199 — 214.

[27] J. M. Robson, N by N Checkers is Exptime complete, SIAM Journal on Computing 13 (2) (1984)
252 267.

[28] J. M. Robson, The complexity of Go, in: International Federation of Information Processing, 1983, pp.
413-417.

[29] J. C. Cullberson, Sokoban is PSPACE-complete, in: Proceedings of the International Conference on
Fun with Algorithms, 1998, pp. 65-76.

[30] T. C. van der Zanden, H. L. Bodlaender, PSPACE-completeness of bloxorz and of games with 2-buttons,
in: Algorithms and Complexity: 9th International Conference, 2015, pp. 403—415.

§11.2 Paper 161

[31] E. D. Demaine, M. L. Demaine, J. O’'Rourke, PushPush and Push-1 are NP-hard in 2d, in: Proceedings
of the 12th Canadian Conference on Computational Geometry, 2000, pp. 211-219.

[32] E. D. Demaine, R. A. Hearn, M. Hoffmann, Push-2-F is PSPACE-complete, in: Proceedings of the 14th

Canadian Conference on Computational Geometry, 2002, pp. 31-35.

[33] E. D. Demaine, M. Hoffmann, M. Holzer, PushPush-k is PSPACEcomplete, in: Proceedings of the 3rd
International Conference on FUN with Algorithms, 2004, pp. 159-170.

[34] E. D. Demaine, M. L. Demaine, M. Hoffmann, J. O’Rourke, Pushing blocks is hard, in: Proceedings of
the 13th Canadian Conference on Computational Geometry, 2001, pp. 21-36.

[35] J. Renz, X. Ge, R. Verma, P. Zhang, Angry Birds as a challenge for artificial intelligence, in: Proceedings
of the 30th AAAT Conference, 2016, pp. 4338-4339.

[36] G. Viglietta, Lemmings is PSPACE-complete, in: Proceedings of the 7th International conference on
Fun with Algorithms, 2014, pp. 340-351.

[37] S. Arora, B. Barak, Computational Complexity: A Modern Approach, 1st Edition, Cambridge Univer-
sity Press, New York, NY, USA, 2009.

[38] M. Stephenson, J. Renz, X. Ge, The computational complexity of angry birds and similar physics-
simulation games, in: AAATI Conference on Artificial Intelligence and Interactive Digital Entertainment,
AIIDE’17, 2017, pp. 241-247.

URL https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/16829

[39] L. J. Stockmeyer, A. K. Chandra, Provably difficult combinatorial games, STAM Journal on Computing
8 (2) (1979) 151-174.

Appendix A. Full structure construction examples (not to scale)

162

The Computational Complexity of Angry Birds

Universal
Quantifier
(false)

Universal
Quantifier
(false)

RS

Existential |
Quantifier |

Universal -~

Quantifier :_-
(true) -

Existential
Quantifier

Universal - >

Quantifier |_
(true)

.

Clause

|
|
|
|
'
|
Clause |
|
|
|
|
|
|
h

Figure A.24: ABED (PSPACE-complete)

Kill Pig

§11.2 Paper

163

Existential
Quantifier

Universal
Quantifier
(random)

Existential
Quantifier

Universal
Quantifier
(random)

Clause

Clause

Clause

x
LJ

0

>
LJ

Y
LJ

0

Figure A.25: ABPS (PSPACE-hard)

> Kill Pig

164 The Computational Complexity of Angry Birds

Existential
Quantifier

Existential
Quantifier

Existential

Quantifier
E
-Z
- M o
:
:
|
Clause (3 "&l*
|
|
|
: -
H LJ 12
= A A
| () x
1
1
|
|
Clause | . s
:
|)
. v
: Utz
- r
' L
1
|
i {
Clause | h
|
|
|
H r
|

C

Figure A.26: ABPD (NP-hard)

§11.2 Paper 165

Ordering

- ==

1 Choice

-

Random

Clause
(opponent)

Clause
(opponent)

Clause
(player)

Clause
(player)

-~ - G

Finish |~

9@—» Kill Pig

Figure A.27: ABES (EXPTIME-complete)

166 The Computational Complexity of Angry Birds

Chapter 12

Conclusion

This thesis has presented several approaches and algorithms that can be used to
generate additional content for physics-based game environments, and/or to help
analyse the performance of Al agents on such content. These methods not only have
their own benefits and applications to video game research, but can also greatly as-
sist with the development of intelligent agents that are able to operate within realistic
physical environments and situations. As a result, such methods are likely to be vi-
tally important for developing any agent that intends to be used successfully within
the real world. The physics-based puzzle game Angry Birds was used as the primary
example case for testing and evaluating our presented algorithms, not only because
of the realistic environment that is presents, but also due to the large number of
already developed agents available. In terms of generating additional content, both
autonomous and mixed-initiative approaches are presented to generate varied, chal-
lenging and feasible levels for Angry Birds, as well as a detailed comparison between
these generators and other possible alternatives. Agent performance was analysed
both in terms of specific level features, as well as more conceptual level properties
that can deceive agents into making poor decisions. These two ideas (level genera-
tion and agent analysis) were also combined to create an adaptive level generation
algorithm, which can detect and exploit specific agent’s weaknesses within the levels
it generates. We also performed an auxiliary analysis on the computational com-
plexity of solving levels for different versions of Angry Birds, which demonstrates
that it is possible to create levels of a certain theoretical difficulty within this game’s
environment.

All of these presented methods can be hugely beneficial in helping agent devel-
opers to understand and address the fundamental limitations associated with the
Al techniques and strategies that their agents employ. Knowing that your agent is
outperformed by another player is not very helpful; knowing why your agent was
outperformed is another matter entirely. Using and applying this information cor-
rectly can therefore improve the overall performance of physical reasoning agents,
both for solving Angry Birds levels as well as other similar tasks. An example of the
benefits that agent analysis can provide was demonstrated through the development
of a hyper-agent, which was able to significantly outperform all other state-of-the-
art agents in its portfolio. Generating additional levels (especially those tailored to
an agent’s own limitations) is also likely to have a substantial impact on the perfor-

167

168 Conclusion

mance of reinforcement learning agents, which have so far struggled to reach that
of more traditional heuristic or simulation-based agents. These methods also have a
wide range of applications within the video game industry, as both procedural con-
tent generators and improved agent performance can have a significant impact on
the development of modern video games. This area of research can be also extended
beyond video games or simulated environments, to help address many real-world
problems.

12.1 Future Work

This thesis has focussed predominantly on the creation and analysis of content for
use in physics-based environments, specifically with the intention of assisting the
development of physical reasoning agents. While we believe that the work presented
has significantly addressed this topic, there is always more work that can be done.
Aside from simply developing more advanced methods for creating suitable content
or improved analysis techniques, the ideal next step for this line of research would
be to combine one or more of our proposed generators with a reinforcement learning
agent, to see if we can achieve any increased performance.

12.1.1 Advanced Content Creation

While we have presented an autonomous search-based, a mixed-initiative, and an
adaptive generation algorithm for creating Angry Birds levels, we still cannot gen-
erate levels to rival the quality of those professionally designed by humans (i.e. the
original Angry Birds levels). As explored in our analysis of deceptive Angry Birds
levels, many of the most challenging and engaging levels often require creative rea-
soning and planning in order to solve them. This conceptual property within levels
is not just enjoyable for humans, but is also very difficult for agents to deal with.
Very few of the levels created by our autonomous level generator possess these de-
ceptive or creative qualities, and if they do it is largely by accident. While both the
mixed-initiative and adaptive generators take steps to address this issue, they each
have their own limitations that can prevent the levels they generate from being equal
in quality to those manually designed by a human expert.

Developing a generation algorithm that can create Angry Birds levels in a fully
autonomous manner which are equal in their creativity and challenge to levels cre-
ated by humans, whilst also removing all the time and effort that goes into crafting
a well-designed level, is likely to be a substantially difficult task (at least in the short
term). Nevertheless, we can certainly develop new techniques and methods that help
move us closer towards this goal. Each of the generation methods we presented have
their own suggested improvements and future work, described in their respective
papers. There are also several other Angry Birds level generators available, most of
which have been previously entered into at least one of the AIBIRDS level genera-
tion competitions over the past few years, each of which could also be expanded or
combined in numerous different ways.

§12.1 Future Work 169

The motivation behind generating levels, whether it be for providing additional
test cases when evaluating and training agents or improving the replayability and
enjoyment of a particular game for human players, is also an important factor that
should be taken into account. Whilst the desired application of the generated levels
is not mutually exclusive to either of these motivations, the resulting levels can often
be more focussed and useful when created with the desired audience in mind. We
could also investigate the generality of our proposed methods by applying them to
other physics-based games or environments apart from Angry Birds. This could even
involve the generation of full 3D structures that take into account multiple environ-
mental factors, allowing them to be replicated within real-world environments.

12.1.2 Improved Performance Analysis

While our presented performance analysis methods for identifying agent limitations
and weaknesses, based on the features or properties within levels, have demonstrated
considerable success when applied to Angry Birds, there are several different aspects
that could be improved in the future. The most obvious next step would be to further
investigate our ability to determine the expected performance of specific agents for
any given unknown level state. This could allow us to improve the overall abilities
of our hyper-agent approach in several different ways. One possible example could
be to not only select between different agents at the start of a new level, but also to
swap agents after each shot. Another idea could be to restart a level midway through
attempting it, if our hyper-agent believes that it can no longer kill the remaining pigs
with the birds it has left.

There is also a significant gap between identifying the relatively simple and ob-
servable level features that are used by our hyper-agent, and the more conceptual
and complex level properties that are presented within the deceptive levels created
to exploit specific agent’s limitations. Ideally both these level aspects should be com-
bined together, allowing us to identify when certain types of deception are present
within levels, and thus allowing our hyper-agent to select Al strategies that are more
suited to dealing with it. Similar to our level generation algorithms, it would also be
beneficial to test out our performance analysis methods on physics-based simulation
environments other than Angry Birds.

12.1.3 Reinforcement Learning Agents

The primary benefit of level generation for aiding agent development, is that it can be
used to provide an almost unlimited number of training examples for reinforcement
learning agents. Several reinforcement learning agents for Angry Birds have been
previously developed, as well as a couple of agents that use more advanced deep
reinforcement learning (aka. deep learning) techniques, but they have all performed
very poorly when tasked with playing unknown levels. This is likely because these
agents have only been trained on the small number of benchmark levels that are
available, and thus their learned strategies do not generalise well to new problems.

170 Conclusion

Agent learns to
play game from

levels given
7 ™

PCG algorithm PCG algorithm
creates levels for creates levels for
agent (training set) agent (test set)
Update PCG

Evaluate agent

algorithm based on Using test set

agent performance

<

Figure 12.1: Proposed cyclic learning system, allowing both a reinforcement learning
agent and an adaptive PCG algorithm to repeatedly improve off each other.

The wide range of additional levels that our presented generators can provide, espe-
cially the tailored levels created by our adaptive generator, can hopefully be used to
improve the overall performance of these reinforcement learning agents.

Aside from increasing the number of available levels for agents to train on, it
might also be possible to use our presented work on level analysis (specifically our
methods for extracting important features from levels based on visual observations)
to improve learning efficiency even further. Rather than simply training on the raw
pixels from the input screenshot, which for a game with 800x480 pixels is a lot of
data, we could perform some initial image pre-processing to help reduce the size of
the state space. By utilising already established work on qualitative reasoning and
representation of physical systems, we can convert this input image into more use-
ful information (i.e. number and locations of certain blocks, identifying weak points
within structures, etc.). By applying our prior knowledge of general physics princi-
pals in this manner, we should be able to significantly reduce the required number of
levels needed for training. This will hopefully allow reinforcement learning agents
to learn new strategies within a reasonable time frame, as well as being able to adapt
faster to new game elements or environmental changes.

Additionally, by using our adaptive generation methodology, it may be possible
to create a cyclic learning system where both generator and agent learn off each
other. This is a similar idea to that of a Generative Adversarial Network (GAN)
but with a reinforcement learning agent replacing the discriminator network. This
essentially creates a loop, where our adaptive generator repeatedly creates new levels
for the reinforcement learning agent that specifically target its own weaknesses and
limitations, and the reinforcement learning agent continuously trains on the levels
that the adaptive generator passes to it, see Figure 12.1. Using a correctly tuned

§12.1 Future Work 171

adaptive generator, rather than a non-adaptive alternative, forces the reinforcement
learning agent to get better at the types of levels that it struggles with the most,
hopefully improving its learning efficiency and overall performance.

172 Conclusion

Bibliography

Avouris, G.; DEMaAINE, E. D.; Guo, A.; AND VIGLIETTA, G., 2015. Classic Nintendo
games are (computationally) hard. Theor. Comput. Sci., 586, C (Jun. 2015), 135-160.
doi:10.1016/j.t¢s.2015.02.037. http://dx.doi.org/10.1016/j.tcs.2015.02.037. (cited on

page

Art, H.; BopLAENDER, H.; vAN KREVELD, M.; ROTE, G.; AND TEL, G., 2007. Wooden
geometric puzzles: Design and hardness proofs. In Fun with Algorithms, 16-29.
Springer Berlin Heidelberg, Berlin, Heidelberg. (cited on page

Amato, A., 2017. Procedural Content Generation in the Game Industry, 15-25.
Springer International Publishing, Cham. ISBN 978-3-319-53088-8. |doi:10.1007/
978-3-319-53088-8 2. https://doi.org/10.1007/978-3-319-53088-8 2. (cited on

page [6)

BAILLARGEON, R., 2007. The Acquisition of Physical Knowledge in Infancy: A Summary
in Eight Lessons, chap. 3, 47-83. John Wiley & Sons, Ltd. ISBN 9780470996652.
doi:10.1002/9780470996652.ch3. https://onlinelibrary.wiley.com/doi/abs/10.1002/
9780470996652.ch3. (cited on page

BerseTH, G.; HAwoRrTH, M. B.; Karapia, M.; AND FaLourtsos, P., 2014. Characteriz-
ing and optimizing game level difficulty. In Proceedings of the Seventh International
Conference on Motion in Games, MIG "14 (Playa Vista, California, 2014), 153-160.
ACM, New York, NY, USA. doi:10.1145/2668064.2668100. http://doi.acm.org/10.
1145/2668064.2668100. (cited on page[7)

BoeNN, G.; BraiN, M.; DE vos, M.; aND FritcH, J., 2011. Automatic music com-
position using answer set programming. Theory Pract. Log. Program., 11, 2-3
(Mar. 2011), 397-427. doi:10.1017/51471068410000530. http://dx.doi.org/10.1017/
51471068410000530. (cited on page

Bojarski, S. AND CoNGDON, C. B, 2010. REALM: A rule-based evolutionary compu-
tation agent that learns to play Mario. In Proceedings of the 2010 IEEE Conference on
Computational Intelligence and Games, 83-90. doi:10.1109/ITW.2010.5593367. (cited

on page

BrownE, C., 2014. Evolutionary game design: Automated game design comes of
age. SIGEVOlution, 6, 2 (Feb. 2014), 3-16. |doi:10.1145/2597453.2597454. http:
//doi.acm.org,/10.1145/2597453.2597454. (cited on page6)

173

http://dx.doi.org/10.1016/j.tcs.2015.02.037
http://dx.doi.org/10.1016/j.tcs.2015.02.037
http://dx.doi.org/10.1007/978-3-319-53088-8_2
http://dx.doi.org/10.1007/978-3-319-53088-8_2
https://doi.org/10.1007/978-3-319-53088-8_2
http://dx.doi.org/10.1002/9780470996652.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470996652.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470996652.ch3
http://dx.doi.org/10.1145/2668064.2668100
http://doi.acm.org/10.1145/2668064.2668100
http://doi.acm.org/10.1145/2668064.2668100
http://dx.doi.org/10.1017/S1471068410000530
http://dx.doi.org/10.1017/S1471068410000530
http://dx.doi.org/10.1017/S1471068410000530
http://dx.doi.org/10.1109/ITW.2010.5593367
http://dx.doi.org/10.1145/2597453.2597454
http://doi.acm.org/10.1145/2597453.2597454
http://doi.acm.org/10.1145/2597453.2597454

174 BIBLIOGRAPHY

BrowNeE, C. B.; PowLEy, E.; WHITEHOUSE, D.; Lucas, S. M.; COwLING, P. I.; ROHLFSHA-
GEN, P; TAVENER, S.; PEREZ, D.; SAMOTHRAKIS, S.; AND COLTON, S., 2012. A survey
of Monte Carlo tree search methods. IEEE Transactions on Computational Intelligence
and Al in Games, 4, 1 (March 2012), 1-43. do0i:10.1109/TCIAIG.2012.2186810. (cited

on page

CariMeRrl, F; FINk, M.; GERMANO, S.; HUMENBERGER, A.; IanNI, G.; Repr, C,;
STEPANOVA, D.; Tucct, A.; AND WIMMER, A., 2016. Angry-HEX: An artificial player
for Angry Birds based on declarative knowledge bases. IEEE Transactions on Com-
putational Intelligence and Al in Games, 8, 2 (2016), 128-139. (cited on page

Camirrery, E.; YANNAKAKTS, G. N.; AND DINGLI, A., 2016. Platformer level design for
player believability. In 2016 IEEE Conference on Computational Intelligence and Games
(CIG), 1-8. [d0i:10.1109/CIG.2016.7860404, (cited on page|6)

CampPBELL, M.; HOANE, A.; AND HSIUNG Hsu, E, 2002. Deep Blue. Artificial Intelligence,
134, 1 (2002), 57 — 83. |doi:https://doi.org/10.1016/S0004-3702(01)00129-1. http:
/ /www.sciencedirect.com/science/article/pii/S0004370201001291. (cited on page

Cawmros, C.; Lertao, M.; aND CoELHO, A., 2015. Integrated modeling of road en-
vironments for driving simulation. GRAPP 2015 - 10th International Conference on
Computer Graphics Theory and Applications; VISIGRAPP, Proceedings, (01 2015), 70-80.

(cited on page

Camros, C. R. F. G.; pe OLIVEIRA SA, W.; TEIXEIRA, J. M. G.; aAND LELIs, L., 2017.
Mixed-initiative tool to speed up content creation in physics-based games. In Pro-
ceedings of SBGames 2017, 590-593. (cited on page

CARDAMONE, L.; Loracono, D.; aAND LaNzI, P. L., 2011a. Interactive evolution for
the procedural generation of tracks in a high-end racing game. In Proceedings of
the 13th Annual Conference on Genetic and Evolutionary Computation (Dublin, Ireland,
2011), 395-402. ACM. (cited on page[)

CARDAMONE, L.; YANNAKAKIS, G. N.; ToGELIUS, |.; AND LaNzi, P. L., 2011b. Evolving
interesting maps for a first person shooter. In Applications of Evolutionary Computa-
tion, 63-72. Springer Berlin Heidelberg, Berlin, Heidelberg. (cited on page[7)

CerTICKY, M. AND CHURCHILL, D., 2017. The current state of StarCraft Al compe-
titions and bots. In AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment. https://aaai.org/ocs/index.php/AIIDE /AIIDE17 /paper/view /15830.

(cited on page

CueN, G.; EscH, G.; WoNka, P; MULLER, P, AND ZHANG, E., 2008. Interactive
procedural street modeling. ACM Trans. Graph., 27, 3 (Aug. 2008), 103:1-103:10.
doi:10.1145/1360612.1360702. |http://doi.acm.org/10.1145/1360612.1360702. (cited

on page

http://dx.doi.org/10.1109/TCIAIG.2012.2186810
http://dx.doi.org/10.1109/CIG.2016.7860404
http://dx.doi.org/https://doi.org/10.1016/S0004-3702(01)00129-1
http://www.sciencedirect.com/science/article/pii/S0004370201001291
http://www.sciencedirect.com/science/article/pii/S0004370201001291
https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15830
http://dx.doi.org/10.1145/1360612.1360702
http://doi.acm.org/10.1145/1360612.1360702

BIBLIOGRAPHY 175

CHEONG, Y.-G. AND YOUNG, R. M., 2008. Narrative generation for suspense: Model-
ing and evaluation. In Interactive Storytelling, 144-155. Springer Berlin Heidelberg,
Berlin, Heidelberg. (cited on page[7)

CuraBaszcz, P; LosacurLov, I.; aAND HuttEeR, F, 2018. Back to basics: Bench-
marking canonical evolution strategies for playing Atari. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, 1419—
1426. International Joint Conferences on Artificial Intelligence Organization. doi:
10.24963 /1jcai.2018,/197, https://doi.org/10.24963 /ijcai.2018/197. (cited on page[5)

Cooxk, M. anp CorroN, S., 2011. Multi-faceted evolution of simple arcade games. In
Computational Intelligence and Games (CIG), 2011 IEEE Conference on, 289-296. (cited

on page[7)

DAHLSKOG, S. AND ToGEL1US, J., 2012. Patterns and procedural content generation:
Revisiting Mario in world 1 level 1. In Proceedings of the First Workshop on Design
Patterns in Games, 1:1-1:8. ACM. (cited on page [6)

DasGurta, S.; VAGHELA, S.; Mopr, V.; AND Kanakia, H., 2016. s-Birds Avengers: A
dynamic heuristic engine-based agent for the Angry Birds problem. IEEE Transac-
tions on Computational Intelligence and Al in Games, 8, 2 (2016), 140-151. (cited on

page

DE WAARD, M.; Ro1jErs, D. M.; AND Bakkzs, S. C. J., 2016. Monte Carlo tree search
with options for general video game playing. In 2016 IEEE Conference on Computa-
tional Intelligence and Games (CIG), 1-8. (cited on page [9)

DEMAINE, E. D.; LOoCKHART, J.; AND LyNCH,]., 2018. The computational complexity
of Portal and other 3D video games. In FUN. (cited on page

DjorpjevicH, D. D.; Xavier, P. G.; BERNARD, M. L.; WHETZEL,]. H.; GLICKMAN,
M. R.; AND VERzZJ, S. J., 2008. Preparing for the aftermath: Using emotional agents
in game-based training for disaster response. In 2008 IEEE Symposium On Compu-
tational Intelligence and Games, 266-275. |doi:10.1109/CIG.2008.5035649. (cited on

page

DorMANS, J., 2010. Adventures in level design: Generating missions and spaces for
action adventure games. In Proceedings of the 2010 Workshop on Procedural Content
Generation in Games, PCGames "10 (Monterey, California, 2010), 1:1-1:8. ACM, New
York, NY, USA. doi:10.1145/1814256.1814257. http://doi.acm.org/10.1145/1814256.
1814257, (cited on page[7)

EBERT, D. S.; MusGraveg, F. K.; PEacHEY, D.; PERLIN, K.; AND WORLEY, S., 2002. Tex-
turing and Modeling: A Procedural Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 3rd edn. ISBN 1558608486. (cited on page @

Epwarps, M., 2011. Algorithmic composition: Computational thinking in music.
Commun. ACM, 54, 7 (Jul. 2011), 58-67. doi:10.1145/1965724.1965742. http://doi.
acm.org/10.1145/1965724.1965742. (cited on page[7)

http://dx.doi.org/10.24963/ijcai.2018/197
http://dx.doi.org/10.24963/ijcai.2018/197
https://doi.org/10.24963/ijcai.2018/197
http://dx.doi.org/10.1109/CIG.2008.5035649
http://dx.doi.org/10.1145/1814256.1814257
http://doi.acm.org/10.1145/1814256.1814257
http://doi.acm.org/10.1145/1814256.1814257
http://dx.doi.org/10.1145/1965724.1965742
http://doi.acm.org/10.1145/1965724.1965742
http://doi.acm.org/10.1145/1965724.1965742

176 BIBLIOGRAPHY

FARNELL, A., 2007. An introduction to procedural audio and its application in com-
puter games. In Audio Mostly Conference, 1-31. (cited on page

Faro0Q, S.; Omn, I.-S.; Kim, M.-]J.; AND KiMm, K., 2016. StarCraft AI competition: A step
toward human-level Al for real-time strategy games. Ai Magazine, 37 (06 2016),
102-106. (cited on page

FERREIRA, L. AND ToLEDO, C., 2014. A search-based approach for generating Angry
Birds levels. In Computational Intelligence and Games (CIG), 2014 IEEE Conference on,

1-8. (cited on page

GATT, A. AND KRAHMER, E., 2018. Survey of the state of the art in natural language
generation: Core tasks, applications and evaluation. |. Artif. Int. Res., 61, 1 (Jan.
2018), 65-170. http://dl.acm.org/citation.cfm?id—=3241691.3241693. (cited on page

)

GDQ, 2018. Games done quick. https://gamesdonequick.com. Accessed: 2018-11-10.
(cited on page [4)

GE, X. AND RENgz,], 2013. Representation and reasoning about general solid rect-
angles. In Proceedings of the Twenty-Third International Joint Conference on Arti-
ficial Intelligence, IJCAI "13 (Beijing, China, 2013), 905-911. AAAI Press. http:
//dl.acm.org/citation.cfm?id—=2540128.2540259. (cited on page

GE, X.; RENZ,].; AND ZHANG, P, 2016. Visual detection of unknown objects in video
games using qualitative stability analysis. IEEE Transactions on Computational Intel-
ligence and Al in Games, 8, 2 (2016), 166-177. (cited on page|11)

GRraAcE, K.; SALVATIER, J.; DAFOE, A.; ZHANG, B.; AND Evans, O., 2017. When will
Al exceed human performance? evidence from Al experts. CoRR, abs/1705.08807
(2017). http://arxiv.org/abs/1705.08807. (cited on pages[p|and

GrrrriTH, L., 2018. Procedural Narrative Generation Through Emotionally Interesting
Non-Player Characters. Ph.D. thesis. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:
diva-76708. (cited on page[7)

Hastings, E. J.; Guna, R. K; AND StANLEY, K. O., 2009. Evolving content in the
galactic arms race video game. In IEEE Symposium on Computational Intelligence and
Games, 241-248. (cited on page[7)

HEeNDRIKX, M.; MEIJER, S.; VAN DER VELDEN, J.; AND losur, A., 2013. Procedural
content generation for games: A survey. ACM Trans. Multimedia Comput. Commun.
Appl., 9, 1 (Feb. 2013), 1:1-1:22. doi:10.1145/2422956.2422957. http://doi.acm.org/
10.1145/2422956.2422957. (cited on pages [f|and [6)

HingstoN, P, 2010. A new design for a turing test for bots. In Proceedings of the 2010
IEEE Conference on Computational Intelligence and Games, 345-350. doi:10.1109/I'TW.
2010.5593336. (cited on page [9)

http://dl.acm.org/citation.cfm?id=3241691.3241693
https://gamesdonequick.com
http://dl.acm.org/citation.cfm?id=2540128.2540259
http://dl.acm.org/citation.cfm?id=2540128.2540259
http://arxiv.org/abs/1705.08807
http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-76708
http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-76708
http://dx.doi.org/10.1145/2422956.2422957
http://doi.acm.org/10.1145/2422956.2422957
http://doi.acm.org/10.1145/2422956.2422957
http://dx.doi.org/10.1109/ITW.2010.5593336
http://dx.doi.org/10.1109/ITW.2010.5593336

BIBLIOGRAPHY 177

Horvirz, E., 2008. Artificial intelligence in the open world. AAAI Presidential Ad-
dress. (cited on page

Iosur, A., 2011. POGGI: generating puzzle instances for online games on grid in-
frastructures. Concurrency and Computation: Practice and Experience, 23 (02 2011),
158-171. doi:10.1002/cpe.1638. (cited on page6)

JeongG, B.-G.; Hyun CHo, S.; AND JIN KANG, S., 2014. Procedural quest generation by
NPC in MMORPG. Journal of Korea Game Society, 14 (02 2014). doi:10.7583/JKGS.
2014.14.1.19. (cited on page[7)

JustESEN, N. AND Risy, S., 2017. Learning macromanagement in StarCraft from re-
plays using deep learning. 2017 IEEE Conference on Computational Intelligence and
Games (CIG), (2017), 162-169. (cited on page

Juut, J., 2012. A Casual Revolution: Reinventing Video Games and Their Players. The MIT
Press. ISBN 0262517396, 9780262517393. (cited on page

Karaxovskiy, S. AND ToGELIUS,]., 2012. The Mario Al benchmark and competitions.
IEEE Transactions on Computational Intelligence and Al in Games, 4, 1 (2012), 55-67.

(cited on page

KeLLy, G. AND Mccasg, H., 2007. Citygen: An interactive system for procedural city
generation. In In Proceedings of GDTW 2007: The 5th Annual International Conference
in Computer Game Design and Technology, 8-16. (cited on page [6)

Kemrka, M.; WypmucH, M.; Runc, G.; Toczex, J.; AND Jaskowskr, W., 2016. ViZ-
Doom: A Doom-based Al research platform for visual reinforcement learning. In
2016 IEEE Conference on Computational Intelligence and Games (CIG), 1-8. (cited on

page[9)

KerR, C. AND SzarrON, D., 2009. Supporting dialogue generation for story-based
games. In Proceedings of the Fifth AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment, AIIDE’09 (Stanford, California, 2009), 154-160. AAAI
Press. http://dl.acm.org/citation.cfm?id=3022586.3022615. (cited on page[7)

KERrRsSEMAKERS, M.; TUXEN, J.; TOGELIUS,].; AND YANNAKAKIS, G. N., 2012. A procedu-
ral procedural level generator generator. In 2012 IEEE Conference on Computational
Intelligence and Games (CIG), 335-341. (cited on page

KuALIFA, A.; PEREZ-LIEBANA, D.; Lucas, S. M.; AND ToGEL1US, J., 2016. General video
game level generation. In Proceedings of the Genetic and Evolutionary Computation
Conference 2016, GECCO 16 (Denver, Colorado, USA, 2016), 253-259. (cited on
page[9)

Kimm, M.-].; KM, K.-]; Kim, S.; AND DEy, A. K., 2016. Evaluation of StarCraft artificial
intelligence competition bots by experienced human players. In Proceedings of the
2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, CHI

http://dx.doi.org/10.1002/cpe.1638
http://dx.doi.org/10.7583/JKGS.2014.14.1.19
http://dx.doi.org/10.7583/JKGS.2014.14.1.19
http://dl.acm.org/citation.cfm?id=3022586.3022615

178 BIBLIOGRAPHY

EA ’16 (San Jose, California, USA, 2016), 1915-1921. ACM, New York, NY, USA.
do1:10.1145/2851581.2892305. http://doi.acm.org/10.1145/2851581.2892305. (cited

on page

Kunanusont, K.; Lucas, S. M.; anDp LieBana, D. P, 2017. General video game
Al: Learning from screen capture. 2017 IEEE Congress on Evolutionary Computation
(CEC), (2017), 2078-2085. (cited on page[9)

LARA-CABRERA, R.; NOGUEIRA-CoLLAZO, M.; CoTTA, C.; AND FERNANDEZ-LEIVA, A. .,
2015. Procedural content generation for real-time strategy games. International
Journal of Interactive Multimedia and Artificial Intelligence, (2015), 40—-48. (cited on

page[7)

Leg, G.; Luo, M.; ZaMBETTA, F; AND L1, X., 2014. Learning a Super Mario controller
from examples of human play. In 2014 IEEE Congress on Evolutionary Computation
(CEC), 1-8. (cited on page[9)

Liaris, A.; SMITH, G.; AND SHAKER, N., 2016. Mixed-initiative content creation, 195-214.
Springer International Publishing, Cham. ISBN 978-3-319-42716-4. |d0i:10.1007/
978-3-319-42716-4 11, https://doi.org/10.1007/978-3-319-42716-4 11. (cited on

page 6)

Liarts, A.; YANNAKAKIS, G. N.; AND ToGELIUS,], 2011. Optimizing visual properties
of game content through neuroevolution. In Proceedings of the Seventh AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Entertainment, AIIDE’11 (Stanford,
California, USA, 2011), 152-157. AAAI Press. http://dl.acm.org/citation.cfm?id=
3014589.3014616. (cited on page[7)

Liaris, A.; YanNakakis, G. N.; anp Tocerius, J., 2013. Sentient sketchbook:
Computer-aided game level authoring. In FDG. (cited on page [6)

Loracono, D.; Lanzi, P. L.; ToGgeLius, J.; ONiEva, E.; PELTA, D. A.; Butz, M. V,
LoNNEKER, T. D.; CARDAMONE, L.; PEREZ, D.; SAEZ, Y.; PREUSS, M.; AND QUAD-
FLIEG, J., 2010. The 2009 simulated car racing championship. IEEE Transac-
tions on Computational Intelligence and Al in Games, 2, 2 (June 2010), 131-147.
doi:10.1109/ TCIALG.2010.2050590. (cited on page[9)

Lores, P. L.; Liaris, A.; AND YANNAKAKIS, G. N., 2016. Framing tension for game
generation. In ICCC. (cited on page[?)

Lu, F; Yamamoto, K.; NoMmura, L. H.; MizuNo, S.; LEE, Y., AND THAWONMAS, R,
2013. Fighting game artificial intelligence competition platform. In 2013 IEEE 2nd
Global Conference on Consumer Electronics (GCCE), 320-323. (cited on page [9)

MAWHORTER, P. AND MATEAS, M., 2010. Procedural level generation using occupancy-
regulated extension. In Proceedings of the 2010 IEEE Conference on Computational
Intelligence and Games, 351-358. (cited on page

http://dx.doi.org/10.1145/2851581.2892305
http://doi.acm.org/10.1145/2851581.2892305
http://dx.doi.org/10.1007/978-3-319-42716-4_11
http://dx.doi.org/10.1007/978-3-319-42716-4_11
https://doi.org/10.1007/978-3-319-42716-4_11
http://dl.acm.org/citation.cfm?id=3014589.3014616
http://dl.acm.org/citation.cfm?id=3014589.3014616
http://dx.doi.org/10.1109/TCIAIG.2010.2050590

BIBLIOGRAPHY 179

MENDES, A.; TOGELIUS, J.; AND NEALEN, A., 2016. Hyper-heuristic general video game
playing. In 2016 IEEE Conference on Computational Intelligence and Games (CIG), 1-8.
(cited on page[9)

MiLLER, G. S. P, 1986. The definition and rendering of terrain maps. In Pro-
ceedings of the 13th Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH "86, 39-48. ACM, New York, NY, USA. doi:10.1145/15922.15890.
http://doi.acm.org/10.1145/15922.15890. (cited on page[7)

Mni1H, V,; KavukcuocLy, K.; SILVER, D.; GRAVES, A.; ANTONOGLOU, I.; WIERSTRA, D.;
AND RIEDMILLER, M., 2013. Playing Atari with deep reinforcement learning. In
NIPS Deep Learning Workshop. (cited on page

Mni1H, V.; KavukcuocLy, K.; SILVER, D.; Rusu, A. A.; VENESS,].; BELLEMARE, M. G.;
GRAVES, A.; RIEDMILLER, M.; FIDJELAND, A. K.; OsTROVSKI, G.; PETERSEN, S.; BEAT-
T1E, C.; SADIK, A.; ANTONOGLOU, I.; KING, H.; KuMARAN, D.; WIERSTRA, D.; LEGG,
S.; anD Hassasis, D., 2015. Human-level control through deep reinforcement
learning. Nature, 518, 7540 (2015), 529-533. (cited on page

Mora, A. M.; MEreLo, J. J.; Garcia-SANcHEZ, P.; Castiro, P. A.; RODRIGUEZ-
DominGo, M. S.; AND HipaLGo-BERMUDEZ, R. M., 2014. Creating autonomous
agents for playing Super Mario Bros game by means of evolutionary finite
state machines. Evolutionary Intelligence, 6, 4 (Mar 2014), 205-218. |doi:10.1007/
$12065-014-0105-7. https://doi.org/10.1007/s12065-014-0105-7. (cited on page

Mouraro, F; pos SanTos, M. P; AND Birra, E, 2011. Automatic level generation
for platform videogames using genetic algorithms. In Proceedings of the 8th Interna-
tional Conference on Advances in Computer Entertainment Technology (Lisbon, Portu-
gal, 2011), 8:1-8:8. ACM. (cited on page[7)

NARAYAN-CHEN, A.; Xu, L.; AND SHAVLIK, J., 2013. An empirical evaluation of ma-
chine learning approaches for Angry Birds. In IJCAI Symposium on Al in Angry
Birds, 1-7. (cited on page

NELsoN, M.], 2016. Investigating vanilla MCTS scaling on the GVG-AI game corpus.
In 2016 IEEE Conference on Computational Intelligence and Games (CIG), 1-7. (cited

on page[9)

NEUFELD, X.; MOSTAGHIM, S.; AND PEREZ-LIEBANA, D., 2015. Procedural level gener-
ation with answer set programming for general video game playing. In 2015 7th
Computer Science and Electronic Engineering Conference (CEEC), 207-212. (cited on

page)

NEwBORN, M. AND NEWBORN, M., 1997. Kasparov Vs. Deep Blue: Computer Chess Comes
of Age. Springer-Verlag, Berlin, Heidelberg. ISBN 0641035322. (cited on pages [4]

and p)

http://dx.doi.org/10.1145/15922.15890
http://doi.acm.org/10.1145/15922.15890
http://dx.doi.org/10.1007/s12065-014-0105-7
http://dx.doi.org/10.1007/s12065-014-0105-7
https://doi.org/10.1007/s12065-014-0105-7

180 BIBLIOGRAPHY

NieLseN, T. S.; BArros, G. A. B.; ToGgeL1us, J.; AND NELsoON, M. J., 2015. Towards
generating arcade game rules with VGDL. In 2015 IEEE Conference on Computational
Intelligence and Games (CIG), 185-192. (cited on page[9)

OLIVEIRA, S. AND MAGALHAES, L., 2017. Adaptive content generation for games.
In 2017 24° Encontro Portugués de Computagio Grdfica e Interagido (EPCGI), 1-8. doi:
10.1109/EPCGI.2017.8124303. (cited on page6)

ONTANON, S.; SYNNAEVE, G.; URIARTE, A.; RicaHoUX, F.; CHURCHILL, D.; AND PREUSS,
M., 2013. A survey of real-time strategy game Al research and competition in
StarCraft. IEEE Transactions on Computational Intelligence and Al in Games, 5, 4 (Dec
2013), 293-311. doi:10.1109/TCIAIG.2013.2286295. (cited on page

PanDIAN, S., 2013. An Al controller for Infinite Mario Bros using evolution strategy.
In 2013 International Conference on Recent Trends in Information Technology (ICRTIT),
721-724. (cited on page[9)

PEDERSEN, C.; TOGELIUS, J.; AND YANNAKAKIS, G. N., 2009. Modeling player experi-
ence in Super Mario Bros. In 2009 IEEE Symposium on Computational Intelligence and
Games, 132-139. |doi:10.1109/CIG.2009.5286482. (cited on page|[8)

PErEZ, D.; N1icoLau, M.; O'NEILL, M.; AND BRABAZON, A., 2011. Evolving behaviour
trees for the Mario Al competition using grammatical evolution. In Proceedings of
the 2011 International Conference on Applications of Evolutionary Computation - Volume
Part I, EvoApplications’11 (Torino, Italy, 2011), 123-132. Springer-Verlag, Berlin,
Heidelberg. http://dl.acm.org/citation.cfm?id—2008402.2008417. (cited on page|8)

PEREZ-LIEBANA, D.; SAMOTHRAKIS, S.; TOGELIUS,].; Lucas, S. M.; AND ScHAUL, T.,
2016a. General video game Al: competition, challenges, and opportunities. In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI'16 (Phoenix,
Arizona, 2016), 4335-4337. AAAI Press. (cited on page[9)

PEREZ-LIEBANA, D.; SAMOTHRAKIS, S.; TOGELIUS, J.; ScHAUL, T.; Lucas, S. M.; Couk-
Toux, A.; LEg, J.; Lim, C. U.; aND THOMPSON, T., 2016b. The 2014 general video
game playing competition. IEEE Transactions on Computational Intelligence and Al in
Games, 8, 3 (Sept 2016), 229-243. (cited on page E])

PEREZ-LIEBANA, D.; STEPHENSON, M.; GAINA, R. D.; RENZ, J.; AND Lucas, S. M., 2017.
Introducing real world physics and macro-actions to general video game Al In
2017 IEEE Conference on Computational Intelligence and Games (CIG). (cited on pages

9] and [10)

PErLIN, K., 1985. An image synthesizer. In Proceedings of the 12th Annual Conference on
Computer Graphics and Interactive Techniques, SSGGRAPH ’85, 287-296. ACM, New
York, NY, USA. doi:10.1145/325334.325247. |http://doi.acm.org/10.1145/325334.
325247, (cited on page[7)

http://dx.doi.org/10.1109/EPCGI.2017.8124303
http://dx.doi.org/10.1109/EPCGI.2017.8124303
http://dx.doi.org/10.1109/TCIAIG.2013.2286295
http://dx.doi.org/10.1109/CIG.2009.5286482
http://dl.acm.org/citation.cfm?id=2008402.2008417
http://dx.doi.org/10.1145/325334.325247
http://doi.acm.org/10.1145/325334.325247
http://doi.acm.org/10.1145/325334.325247

BIBLIOGRAPHY 181

PoLceanu, M. anDp Bucsug, C., 2013. Towards a theory-of-mind-inspired generic
decision-making framework. In IJCAI Symposium on Al in Angry Birds, 1-7. (cited

on page

PraDA, R.; LoPEs, P.; CATARINO,].; QUITERIO,].; AND MELO, F. S., 2015. The geometry
friends game Al competition. In 2015 IEEE Conference on Computational Intelligence
and Games (CIG), 431-438. (cited on page)

PErEzZ-L1EBANA, D.; SAMOTHRAKIS, S.; ToGELIUS, J.; ScHAUL, T.; AND Lucas, S. M.,
2016. Analyzing the robustness of general video game playing agents. In 2016
IEEE Conference on Computational Intelligence and Games (CIG), 1-8. (cited on page

2]

PrusINKIEWICZ, P. AND LINDENMAYER, A., 1996. The Algorithmic Beauty of Plants.
Springer-Verlag, Berlin, Heidelberg. ISBN 0-387-94676-4. (cited on page[7)

RaBIN, S., 2002. AI Game Programming Wisdom. Charles River Media, Inc., Rockland,
MA, USA. ISBN 1584500778. (cited on page

Rao, Q. AND FrruNIK], J., 2018. Deep learning for self-driving cars: Chances and
challenges. In Proceedings of the 1st International Workshop on Software Engineering for
Al in Autonomous Systems, SEFAIS "18 (Gothenburg, Sweden, 2018), 35-38. ACM,
New York, NY, USA. |doi:10.1145/3194085.3194087. http://doi.acm.org/10.1145/
3194085.3194087. (cited on page

ReNz, J., 2015. AIBIRDS: The Angry Birds artificial intelligence competition. In
Proceedings of the 29th AAAI Conference, 4326—4327. (cited on page

Renz,]J. aAND GE, X, 2015. Physics Simulation Games, 1-19. Springer Singapore,
Singapore. ISBN 978-981-4560-52-8. |doi:10.1007/978-981-4560-52-8 29-1. https:
//doi.org/10.1007/978-981-4560-52-8_29-1. (cited on pages[9and [10)

Renz,].; GE, X.; GouLDp, S.; AND ZHANG, P, 2015. The Angry Birds Al competition.
Al Magazine, 36, 2 (2015), 85-87. (cited on page

ReNz,].; GE, X.; VERMA, R,; AND ZHANG, P, 2016. Angry Birds as a challenge for
artificial intelligence. In AAAI Conference on Artificial Intelligence, 4338-4339. (cited

on page (15)

Riepr, M.; Taug, D.; aND BuLritko, V., 2011. Game Al as storytelling. Artificial
Intelligence for Computer Games, (02 2011), 125-150. doi:10.1007/978-1-4419-8188-2
6. (cited on page

Rovio, 2018. Angry Birds 1 billion downloads. http://www.rovio.com /news/
1-billion-angry-birds-downloads. Accessed: 2018-11-10. (cited on page [12)

SAMUEL, A. L., 1959. Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 3, 3 (July 1959), 210-229. doi:10.1147/xd.
33.0210. (cited on page

http://dx.doi.org/10.1145/3194085.3194087
http://doi.acm.org/10.1145/3194085.3194087
http://doi.acm.org/10.1145/3194085.3194087
http://dx.doi.org/10.1007/978-981-4560-52-8_29-1
https://doi.org/10.1007/978-981-4560-52-8_29-1
https://doi.org/10.1007/978-981-4560-52-8_29-1
http://dx.doi.org/10.1007/978-1-4419-8188-2_6
http://dx.doi.org/10.1007/978-1-4419-8188-2_6
http://www.rovio.com/news/1-billion-angry-birds-downloads
http://www.rovio.com/news/1-billion-angry-birds-downloads
http://dx.doi.org/10.1147/rd.33.0210
http://dx.doi.org/10.1147/rd.33.0210

182 BIBLIOGRAPHY

SCHAEFFER, J.; LAKE, R.; Lu, P,; AND BrRyAaNT, M., 1996. CHINOOK: The world man-
machine checkers champion. The AI Magazine, 16, 1 (1996), 21-29. (cited on page

@

Scuaut, T., 2013. A video game description language for model-based or interactive
learning. In 2013 IEEE Conference on Computational Inteligence in Games (CIG), 1-8.

(cited on page EI)

SCHIFFER, S.; JOURENKO, M.; AND LAKEMEYER, G., 2016. Akbaba: An agent for the
Angry Birds Al challenge based on search and simulation. IEEE Transactions on
Computational Intelligence and Al in Games, 8, 2 (2016), 116-127. (cited on page

SHAKER, N.; NicoLAu, M.; YANNAKAKIS, G. N.; ToGeL1UsS, J.; AND O’NEILL, M., 2012.
Evolving levels for Super Mario Bros using grammatical evolution. In 2012 IEEE
Conference on Computational Intelligence and Games (CIG), 304-311. |doi:10.1109/CIG.
2012.6374170. (cited on page

SHAKER, N.; SMITH, G.; AND YANNAKAKIS, G. N., 2016a. Evaluating content generators,
215-224. Springer International Publishing, Cham. ISBN 978-3-319-42716-4. doi:10.
1007/978-3-319-42716-4 12. https://doi.org/10.1007/978-3-319-42716-4 12. (cited

on page [6)

SHAKER, N.; ToGELIUS,].; AND NELSON, M.]., 2016b. Procedural Content Generation in
Games: A Textbook and an Overview of Current Research. Springer. (cited on pages [

and

SHAKER, N.; ToGeL1US, |J.; YANNAKAKIS, G. N.; WEBER, B.; SHIM1ZU, T.; HASHIYAMA,
T.; SORENSON, N.; PAsQUIER, P.; MAWHORTER, I, TAkaHASHI, G.; SMITH, G.; AND
BAUMGARTEN, R., 2011. The 2010 Mario Al championship: Level generation track.
IEEE Transactions on Computational Intelligence and Al in Games, 3, 4 (2011), 332-347.

(cited on page

SHao, K.; Znv, Y.; AND ZHAO, D., 2018. StarCraft micromanagement with reinforce-
ment learning and curriculum transfer learning. CoRR, abs/1804.00810 (2018).

(cited on page

SHINOHARA, S.; TakaNo, T.; Takasg, H.; Kawanaka, H.; AND TsuruoKka, S., 2012.
Search algorithm with learning ability for Mario Al — combination A* algorithm
and Q-Learning. In 2012 13th ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing, 341-344. doi:
10.1109/SNPD.2012.93. (cited on page

S1LJEBRAT, H.; ADDYMAN, C.; AND PICKERING, A., 2018. Towards human-like artificial
intelligence using StarCraft 2. In Proceedings of the 13th International Conference on
the Foundations of Digital Games, FDG "18 (Malmo, Sweden, 2018), 45:1-45:4. ACM,
New York, NY, USA. doi:10.1145/3235765.3235811. http://doi.acm.org/10.1145/
3235765.3235811. (cited on page

http://dx.doi.org/10.1109/CIG.2012.6374170
http://dx.doi.org/10.1109/CIG.2012.6374170
http://dx.doi.org/10.1007/978-3-319-42716-4_12
http://dx.doi.org/10.1007/978-3-319-42716-4_12
https://doi.org/10.1007/978-3-319-42716-4_12
http://dx.doi.org/10.1109/SNPD.2012.93
http://dx.doi.org/10.1109/SNPD.2012.93
http://dx.doi.org/10.1145/3235765.3235811
http://doi.acm.org/10.1145/3235765.3235811
http://doi.acm.org/10.1145/3235765.3235811

BIBLIOGRAPHY 183

SILvER, D.; HuaNGg, A.; MapbpisoN, C. J.; GUgz, A.; SIFRE, L.; VAN DEN DRIESSCHE,
G.; SCHRITTWIESER, J.; ANTONOGLOU, I.; PANNEERSHELVAM, V.; LANCTOT, M.; DIELE-
MAN, S.; GREWE, D.; NHAM,].; KALCHBRENNER, N.; SUTSKEVER, I.; LILLICRAP, T;
LeacH, M.; KavukcuocLy, K.; GRAEPEL, T.; AND Hassasrs, D., 2016. Mastering the
game of Go with deep neural networks and tree search. Nature, 529, 7587 (2016),
484-489. (cited on page)

SironI, C. F. AND WiNanDs, M. H. M., 2016. Comparison of rapid action value esti-
mation variants for general game playing. In 2016 IEEE Conference on Computational
Intelligence and Games (CIG), 1-8. (cited on page[9)

SMELIK, R.; TutenNEeL, T., pE KrRaAKER, K., AND BIDARRA, R., 2011. A declara-
tive approach to procedural modeling of virtual worlds. Computers & Graph-
ics, 35, 2 (2011), 352 — 363. doi:https://doi.org/10.1016/j.cag.2010.11.011. http:
/ /www.sciencedirect.com/science/article/pii/S0097849310001809. Virtual Reality in
Brazil Visual Computing in Biology and Medicine Semantic 3D media and content
Cultural Heritage. (cited on page

SMELIK, R. M.; KRAKER, K.]J. D.; GROENEWEGEN, S. A.; TUTENEL, T.; AND BIDARRA,
R., 2009. A survey of procedural methods for terrain modelling. In Proceed-
ings of the CASA’09 Workshop on 3D Advanced Media in Gaming and Simulation, 25—
34. Amsterdam, The Netherlands. http://www.cg.its.tudelft.nl/Publications-new/
2009/SDGTB09a. (cited on page[7)

SMELIK, R. M.; TUTENEL, T.; BIDARRA, R.; AND BENES, B., 2014. A survey on procedural
modelling for virtual worlds. Comput. Graph. Forum, 33, 6 (Sep. 2014), 31-50. doi:
10.1111 /cgf.12276. https://doi.org/10.1111/cgf.12276. (cited on page[7)

SmiTH, A. M. AND MATEAS, M., 2010. Variations forever: Flexibly generating rulesets
from a sculptable design space of mini-games. In Proceedings of the 2010 IEEE
Conference on Computational Intelligence and Games, 273-280. doi:10.1109,/ITW.2010.
5593343, (cited on page[7)

SmitH, G.; TREANOR, M.; WHITEHEAD, J.; AND MATEAS, M., 2009. Rhythm-based level
generation for 2D platformers. In Proceedings of the 4th International Conference on
Foundations of Digital Games, FDG "09 (Orlando, Florida, 2009), 175-182. ACM, New
York, NY, USA. doi:10.1145/1536513.1536548. http://doi.acm.org/10.1145/1536513.
1536548, (cited on page[7)

SmitH, G.; WHITEHEAD, J.; AND MATEAS, M., 2010. Tanagra: A mixed-initiative level
design tool. In Proceedings of the Fifth International Conference on the Foundations of
Digital Games, FDG 10, 209-216. (cited on page /)

SmiTtH, G.; WHITEHEAD, J.; AND MATEAS, M., 2011a. Tanagra: Reactive planning and
constraint solving for mixed-initiative level design. IEEE Transactions on Computa-
tional Intelligence and Al in Games, 3, 3 (Sept 2011), 201-215. doi:10.1109/ TCIAIG.
2011.2159716. (cited on page [6)

http://dx.doi.org/https://doi.org/10.1016/j.cag.2010.11.011
http://www.sciencedirect.com/science/article/pii/S0097849310001809
http://www.sciencedirect.com/science/article/pii/S0097849310001809
http://www.cg.its.tudelft.nl/Publications-new/2009/SDGTB09a
http://www.cg.its.tudelft.nl/Publications-new/2009/SDGTB09a
http://dx.doi.org/10.1111/cgf.12276
http://dx.doi.org/10.1111/cgf.12276
https://doi.org/10.1111/cgf.12276
http://dx.doi.org/10.1109/ITW.2010.5593343
http://dx.doi.org/10.1109/ITW.2010.5593343
http://dx.doi.org/10.1145/1536513.1536548
http://doi.acm.org/10.1145/1536513.1536548
http://doi.acm.org/10.1145/1536513.1536548
http://dx.doi.org/10.1109/TCIAIG.2011.2159716
http://dx.doi.org/10.1109/TCIAIG.2011.2159716

184 BIBLIOGRAPHY

SmitH, G.; WHITEHEAD, J.; MATEAS, M.; TREANOR, M.; MARCH,].; AND CHA, M,,
2011b. Launchpad: A rhythm-based level generator for 2-D platformers. IEEE
Transactions on Computational Intelligence and Al in Games, 3, 1 (March 2011), 1-16.

(cited on page

SNODGRASS, S. AND ONTANON, S., 2014. A hierarchical approach to generating maps
using markov chains. In Proceedings of the Tenth AAAI Conference on Artificial In-
telligence and Interactive Digital Entertainment, AIIDE’14 (Raleigh, NC, USA, 2014),
59-65. AAAI Press. (cited on page

Seeep, E. R., 2010. Evolving a Mario agent using cuckoo search and softmax heuris-
tics. In 2010 2nd International IEEE Consumer Electronics Society’s Games Innovations
Conference, 1-7. |doi:10.1109/ICEGIC.2010.5716893. (cited on page [8)

STAMMER, D.; MANNHEIM, H.; GUNTHER, T.; AND PrREUSS, M., 2015. Player-adaptive
Spelunky level generation. In 2015 IEEE Conference on Computational Intelligence and
Games (CIG), 130-137. (cited on page[7)

STEPHENSON, M., 2018. Iratus Aves (MSGv2.0). https://github.com/stepmat/
IratusAves. Winning entry for the 2017 and 2018 Angry Birds level generation
competitions. (cited on page

STEPHENSON, M. AND RENz,], 2016a. Procedural generation of complex stable
structures for Angry Birds levels. In 2016 IEEE Conference on Computational In-
telligence and Games (CIG), CIG'16 (Santorini, Greece, September 2016), 1-8. doi:
10.1109/CIG.2016.7860410. https://ieeexplore.ieee.org/document/7860410. (cited

on page

STEPHENSON, M. AND RENz, J., 2016b. Procedural generation of levels for Angry
Birds style physics games. In AAAI Conference on Artificial Intelligence and In-
teractive Digital Entertainment, AIIDE’16 (Burlingame, CA, USA, October 2016),
225-231. https://www.aaai.org/ocs/index.php/AIIDE /AIIDE16 /paper/view /13983.

(cited on page

STEPHENSON, M. AND REnz,], 2017a. Creating a hyper-agent for solving An-
gry Birds levels. In AAAI Conference on Artificial Intelligence and Interactive Digi-
tal Entertainment, AIIDE"17 (Snowbird, UT, USA, October 2017), 234-240. https:
//aaai.org/ocs/index.php/AIIDE /AIIDEL7 /paper/view /15828, (cited on page

STEPHENSON, M. AND RENz, J., 2017b. Generating varied, stable and solvable levels
for Angry Birds style physics games. In 2017 IEEE Conference on Computational
Intelligence and Games (CIG), CIG'17 (New York, NY, USA, August 2017), 1-8. doi:
10.1109/CIG.2017.8080448. https://ieeexplore.ieee.org/document /8080448, (cited

on page

STEPHENSON, M. AND RENZ, J., 2018. Deceptive Angry Birds: towards smarter game-
playing agents. In Proceedings of the 13th International Conference on the Foundations

http://dx.doi.org/10.1109/ICEGIC.2010.5716893
https://github.com/stepmat/IratusAves
https://github.com/stepmat/IratusAves
http://dx.doi.org/10.1109/CIG.2016.7860410
http://dx.doi.org/10.1109/CIG.2016.7860410
https://ieeexplore.ieee.org/document/7860410
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/13983
https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15828
https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15828
http://dx.doi.org/10.1109/CIG.2017.8080448
http://dx.doi.org/10.1109/CIG.2017.8080448
https://ieeexplore.ieee.org/document/8080448

BIBLIOGRAPHY 185

of Digital Games, FDG'18 (Malmo, Sweden, August 2018), 13:1-13:10. |doi:10.1145/
3235765.3235775. http://doi.acm.org/10.1145/3235765.3235775. (cited on page

STEPHENSON, M. AND RENz, J., 2019. Agent-based adaptive level generation for dy-
namic difficulty adjustment in Angry Birds. In Games and Simulations for Artificial
Intelligence at AAAI'19 (Honolulu, Hawaii, USA, January 2019), 1-8. (cited on page

21)

STEPHENSON, M.; RENZ,].; AND GE, X., 2017. The computational complexity of Angry
Birds and similar physics-simulation games. In AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment, AIIDE’17 (Snowbird, UT, USA, Octo-
ber 2017), 241-247. https://aaai.org/ocs/index.php/AIIDE/AIIDEL7 /paper/view/
15829. (cited on page

STEPHENSON, M.; RENz, J.; AND GE, X., 2018a. The computational complexity of
Angry Birds. CoRR, arXiv:1812.07793 (2018). (cited on page

STEPHENSON, M.; RNz, J.; GE, X.; AND ZHANG, P, 2018b. Generating stable, build-
ing block structures from sketches. In Computer Games Workshop at I[CAI-ECAI'18,
CGW’18 (Stockholm, Sweden, July 2018), 1-19. (cited on page

STEPHENSON, M.]. B.; RENZ, |.; GE, X.; FERREIRA, L. N.; TOGELIUS, J.; AND ZHANG, P,
2018c. The 2017 AIBIRDS level generation competition. IEEE Transactions on Games,
(2018), 1-10. |doi:10.1109/T'G.2018.2854896. https://ieeexplore.ieee.org/document/
8410472. (cited on page

STONE, M., 2003. Agents in the real world computational models in artificial intelli-
gence and cognitive science. Rutgers University. (cited on page

SUMMERVILLE, A.; PHILIP, S.; AND MATEAS, M., 2015. MCMCTS PCG 4 SMB: Monte
Carlo tree search to guide platformer level generation. In AAAI Conference on Arti-
ficial Intelligence and Interactive Digital Entertainment. (cited on page

Tavares, A.; AzpUrua, H.; SaNTOs, A.; AND CHAIMOWICZ, L., 2016. Rock, paper,
StarCraft: strategy selection in real-time strategy games. In AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment. https://aaai.org/ocs/index.
php/AIIDE/AIIDE16 /paper/view/13998. (cited on page

Tayror, T. L., 2012. Raising the Stakes: E-Sports and the Professionalization of Computer
Gaming. The MIT Press. ISBN 0262017377, 9780262017374. (cited on page [4)

TEsauro, G., 1995. Temporal difference learning and TD-Gammon. Commun. ACM,
38, 3 (Mar. 1995), 58-68. doi:10.1145/203330.203343. http://doi.acm.org/10.1145/
203330.203343. (cited on page [4)

ToGEL1US,]., 2015. Al researchers, video games are your friends! In 2015 7th Inter-
national Joint Conference on Computational Intelligence (IJCCI), vol. 2, 5-5. (cited on

pages [3land

http://dx.doi.org/10.1145/3235765.3235775
http://dx.doi.org/10.1145/3235765.3235775
http://doi.acm.org/10.1145/3235765.3235775
https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15829
https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15829
http://dx.doi.org/10.1109/TG.2018.2854896
https://ieeexplore.ieee.org/document/8410472
https://ieeexplore.ieee.org/document/8410472
https://aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/13998
https://aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/13998
http://dx.doi.org/10.1145/203330.203343
http://doi.acm.org/10.1145/203330.203343
http://doi.acm.org/10.1145/203330.203343

186 BIBLIOGRAPHY

TogeLr1us, J., 2018. Playing Smart: On Games, Intelligence and Artificial Intelligence.
Playful Thinking. MIT Press. ISBN 9780262039031. https://books.google.com.au/
books?id=Jmn8tAEACAAJ. (cited on page

ToGeL1Us, |.; JusTiNUSSEN, T.; AND HARTZEN, A., 2012. Compositional procedural
content generation. In Proceedings of the The Third Workshop on Procedural Content
Generation in Games, PCG12 (Raleigh, NC, USA, 2012), 16:1-16:4. (cited on page

2]

ToGeL1us, J.; KARAKOVSKIY, S.; AND BAUMGARTEN, R., 2010a. The 2009 Mario Al
competition. In IEEE Congress on Evolutionary Computation, 1-8. (cited on page

ToGEL1US, J.; KARAKOVSKIY, S.; KOUTNIK, J.; AND SCHMIDHUBER, J., 2009. Super Mario
evolution. In Proceedings of the 5th International Conference on Computational Intelli-
gence and Games, CIG’09 (Milano, Italy, 2009), 156-161. IEEE Press, Piscataway, NJ,
USA. http://dl.acm.org/citation.cfm?id=1719293.1719326. (cited on page

ToGeL1us, J.; PREUSS, M.; BEUME, N.; WESSING, S.; HAGELBACK, J.; YANNAKAKIS, G. N.;
AND Grarrioro, C., 2013. Controllable procedural map generation via multiobjec-
tive evolution. Genetic Programming and Evolvable Machines, 14, 2 (Jun. 2013), 245-
277. |doi:10.1007 /s10710-012-9174-5. http://dx.doi.org/10.1007/s10710-012-9174-5.

(cited on page

ToGeL1us, J.; PREUSS, M.; BEUME, N.; WESSING, S.; HAGELBACK, J.; AND YANNAKAKIS,
G. N., 2010b. Multiobjective exploration of the StarCraft map space. In Proceedings
of the 2010 IEEE Conference on Computational Intelligence and Games, 265-272. doi:
10.1109/ITW.2010.5593346. (cited on pages [/]and

ToGELIUS,]. AND SCHMIDHUBER,]., 2008. An experiment in automatic game design.
In 2008 IEEE Symposium On Computational Intelligence and Games, 111-118. doi:
10.1109/CIG.2008.5035629. (cited on page[/)

ToGELIUS, J. AND YANNAKAKIS, G. N., 2016. General general game Al In 2016 IEEE
Conference on Computational Intelligence and Games (CIG), 1-8. doi:10.1109/C1G.2016.
7860385. (cited on page

ToGeL1us, J.; YANNAKAKIS, G. N.; STANLEY, K. O.; AND BrowNE, C., 2011. Search-
based procedural content generation: A taxonomy and survey. IEEE Transactions
on Computational Intelligence and Al in Games, 3, 3 (Sept 2011), 172-186. doi:10.1109/
TCIAIG.2011.2148116. (cited on page [6)

TorrADO, R. R.; BONTRAGER, P.,; ToGEL1US, J.; L1U, J.; AND PEREZ-LIEBANA, D., 2018.
Deep reinforcement learning for general video game Al. CoRR, abs/1806.02448
(2018). (cited on page[))

Tsay, J. J.; CueN, C. C,; aND Hsu, J.], 2011. Evolving intelligent Mario controller by
reinforcement learning. In 2011 International Conference on Technologies and Applica-
tions of Artificial Intelligence, 266-272. (cited on page [9)

https://books.google.com.au/books?id=Jmn8tAEACAAJ
https://books.google.com.au/books?id=Jmn8tAEACAAJ
http://dl.acm.org/citation.cfm?id=1719293.1719326
http://dx.doi.org/10.1007/s10710-012-9174-5
http://dx.doi.org/10.1007/s10710-012-9174-5
http://dx.doi.org/10.1109/ITW.2010.5593346
http://dx.doi.org/10.1109/ITW.2010.5593346
http://dx.doi.org/10.1109/CIG.2008.5035629
http://dx.doi.org/10.1109/CIG.2008.5035629
http://dx.doi.org/10.1109/CIG.2016.7860385
http://dx.doi.org/10.1109/CIG.2016.7860385
http://dx.doi.org/10.1109/TCIAIG.2011.2148116
http://dx.doi.org/10.1109/TCIAIG.2011.2148116

BIBLIOGRAPHY 187

Turing, A. M., 1950. Computing machinery and intelligence. Mind, 59, October
(1950), 433-60. (cited on page [6)

Tziorrz1OTIS, N.; PAPAGIANNIS, G.; AND BLEKAS, K., 2016. A bayesian ensemble
regression framework on the Angry Birds game. IEEE Transactions on Computational
Intelligence and Al in Games, 8, 2 (2016), 104-115. (cited on page

URIARTE, A. AND ONTANON, S., 2013. PSMAGE: Balanced map generation for Star-
Craft. 2013 IEEE Conference on Computational Inteligence in Games (CIG), (2013), 1-8.

(cited on page

VaLrcHANOv, V. AND BrowN, J. A, 2012. Evolving dungeon crawler levels with
relative placement. In Proceedings of the Fifth International C* Conference on Computer
Science and Software Engineering (Montreal, Quebec, Canada, 2012), 27-35. ACM.
(cited on page[7)

VERSCHURE, P. F. AND ALTHAUS, P, 2003. A real-world rational agent: unifying old
and new Al. Cognitive Science, 27 (2003), 561-590. (cited on page

WALEGA, P. A.; Zawipzki, M.; AND LEcHowski, T., 2016. Qualitative physics in Angry
Birds. IEEE Transactions on Computational Intelligence and Al in Games, 8, 2 (2016),
152-165. (cited on page

WEBER, B. G.; MAWHORTER, P.; MATEAS, M.; AND JHALA, A., 2010. Reactive planning
idioms for multi-scale game Al In Proceedings of the 2010 IEEE Conference on Com-
putational Intelligence and Games, 115-122. doi:10.1109/1TW.2010.5593363. (cited on

page

WEriss, B., 2012. Classic Home Video Games, 1972-1984: A Complete Reference Guide.
McFarland & Company, Inc. Publishers. ISBN 0786469382, 9780786469383. (cited

on page[9)

WHITEHEAD,]., 2010. Toward proccedural decorative ornamentation in games. In
Proceedings of the 2010 Workshop on Procedural Content Generation in Games, PCGames
10 (Monterey, California, 2010), 9:1-9:4. ACM, New York, NY, USA. |doi:10.1145/
1814256.1814265. http://doi.acm.org/10.1145/1814256.1814265. (cited on page@

X1a, W,; L1, H.; anD L, B, 2016. A control strategy of autonomous vehicles based on
deep reinforcement learning. In 2016 9th International Symposium on Computational
Intelligence and Design (ISCID), vol. 2, 198-201. doi:10.1109/ISCID.2016.2054. (cited
on page 3)

Xu, Q.; TREMBLAY, J.; AND VERBRUGGE, C., 2014. Generative methods for guard and
camera placement in stealth games. In AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, 87-93. (cited on page

YANNAKAKIS, G.; ToGELIUS, J.; KHALED, R.; JHALA, A.; KARPOUZIS, K.; PAIVA, A.; AND
VasaLou, A., 2010. Siren: Towards adaptive serious games for teaching conflict

http://dx.doi.org/10.1109/ITW.2010.5593363
http://dx.doi.org/10.1145/1814256.1814265
http://dx.doi.org/10.1145/1814256.1814265
http://doi.acm.org/10.1145/1814256.1814265
http://dx.doi.org/10.1109/ISCID.2016.2054

188 BIBLIOGRAPHY

resolution. In 4th European Conference on Games Based Learning 2010, ECGBL 2010,
412-417. Academic Conferences Limited. (cited on page[7)

YANNAKAKIS, G. N. AND TogeL1us,]., 2011. Experience-driven procedural content
generation. IEEE Transactions on Affective Computing, 2, 3 (July 2011), 147-161. doi:
10.1109/T-AFFC.2011.6. (cited on page6)

YANNAKAKIS, G. N. AND ToGeL1US, J., 2018. Artificial Intelligence and Games. Springer.
http://gameaibook.org. (cited on pages [3and [4)

Yoon, D. anp Kivm, K., 2015. Challenges and opportunities in game artificial in-
telligence education using Angry Birds. I[EEE Access, 3 (2015), 793-804. doi:
10.1109/ACCESS.2015.2442680. (cited on page [14)

ZHANG, P. AND RENz,], 2014. Qualitative spatial representation and reasoning in
Angry Birds: The extended rectangle algebra. In Proceedings of the Fourteenth In-
ternational Conference on Principles of Knowledge Representation and Reasoning, KR'14,
378-387. (cited on pages[11]and

Referenced Games

Half-Life (Valve, 1998)

Forza Motorsport (Turn 10 Studios, 2005)
Left 4 Dead (Valve, 2008)

Resistance 3 (Insomniac Games, 2011)

The Elder Scrolls V: Skyrim (Bethesda Game Studios, 2011)
Supreme Commander 2 (Gas Powered Games, 2010)
Minecraft (Mojang, 2011)

Borderlands (Gearbox Software, 2009)

Spore (Maxis, 2008)

No Man’s Sky (Hello Games, 2016)

Q*bert (Gottlieb, 1982)

Rogue (A.I Design, 1980)

StarCraft (Blizzard Entertainment, 1998)
StarCraft 2 (Blizzard Entertainment, 2010)
Super Mario Bros. (Nintendo, 1985)

Pong (Atari, 1972)

Breakout (Atari, 1976)

Tennis for Two (William Higinbotham, 1958)
Angry Birds (Rovio Entertainment, 2009)
Cut the Rope (ZeptoLab, 2010)

Where's my Water (Creature Feep, 2011)

The Incredible Machine (Dynamix, 1993)
World of Goo (2D Boy, 2008)

http://dx.doi.org/10.1109/T-AFFC.2011.6
http://dx.doi.org/10.1109/T-AFFC.2011.6
http://gameaibook.org
http://dx.doi.org/10.1109/ACCESS.2015.2442680
http://dx.doi.org/10.1109/ACCESS.2015.2442680

BIBLIOGRAPHY

189

Crayon Physics (Petri Purho, 2009)
Tricky Towers (WeirdBeard, 2016)
Besiege (Spiderling Studios, 2015)
Crush the Castle (Armor Games, 2009))

	Acknowledgments
	Abstract
	Contents
	Introduction
	Video Games
	Agents
	Procedural Content Generation
	Competitions

	Physics-Based Games
	Relevance to Real-World Problems
	Angry Birds
	Agents
	Level Generation

	Thesis Outline
	Motivation
	Summary
	Research Paper Contributions

	Procedural Generation of Complex Stable Structures for Angry Birds Levels
	Foreword
	Paper

	Procedural Generation of Levels for Angry Birds Style Physics Games
	Foreword
	Paper

	Generating Varied, Stable and Solvable Levels for Angry Birds Style Physics Games
	Foreword
	Paper

	The 2017 AIBIRDS Level Generation Competition
	Foreword
	Paper

	Generating Stable, Building Block Structures from Sketches
	Foreword
	Paper

	Creating a Hyper-Agent for Solving Angry Birds Levels
	Foreword
	Paper

	Deceptive Angry Birds: Towards Smarter Game-Playing Agents
	Foreword
	Paper

	Agent-Based Adaptive Level Generation for Dynamic Difficulty Adjustment in Angry Birds
	Foreword
	Paper

	The Computational Complexity of Angry Birds and Similar Physics-Simulation Games
	Foreword
	Paper

	The Computational Complexity of Angry Birds
	Foreword
	Paper

	Conclusion
	Future Work
	Advanced Content Creation
	Improved Performance Analysis
	Reinforcement Learning Agents

